Skip to main content
Log in

Monte Carlo simulation on kinetic behavior of one-pot hyperbranched polymerization based on AA*+CB2

  • Articles
  • SPECIAL TOPIC · Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Monte Carlo simulation was applied to investigate the kinetic behavior of AA*+CB2 system. The algorithm consisted of two procedures to simulate the in-situ synthesis of AB2-like intermediate and the subsequent polymerization, respectively. In order to improve the accuracy of the prediction, the mobility distinction between different scale molecules in polymerization was taken into account by relating the reaction rate constants to the collision possibility of each pair of species. The feed ratio of initial monomers and the activity difference between the two functional groups within AA* were studied systematically to catch the essential features of the reaction. Simulation results have revealed that the achievable maximum conversion primarily depends on the extent of the reactivity difference between A and A*-groups, and it is suggested that A*-group should be at least 10 times more active than A-group to achieve high number-average degree of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu JQ, Bohnsack DA, Mackay ME, Wooley KL. Unusual mechanical performance of amphiphilic crosslinked polymer networks. J Am Chem Soc, 2007, 129: 506–507

    Article  CAS  Google Scholar 

  2. Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL. The antifouling and fouling-release performance of unique hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling Alga Ulva. Langmuir, 2005, 21: 3044–3053

    Article  CAS  Google Scholar 

  3. Voit B, Beyerlein D, Eichhorn K-J, Grundke K, Schmaljohann D, Loontjens T. Functional hyperbranched polyesters for application in blends, coating, and thin films. Chem Eng Technol, 2002, 25: 704–707

    Article  CAS  Google Scholar 

  4. Kumar KR, Brooks DE. Comparison of hyperbranched and linear polyglycidol unimolecular reverse micelles as nanoreactors and nanocapsules. Macromol Rapid Commun, 2005, 26: 155–159

    Article  CAS  Google Scholar 

  5. Garamus VM, Maksimova T, Richtering W, Aymonier C, Thomann R, Antonietti L, Mecking S. Solution structure of metal particles prepared in unimolecular reactors of amphiphilic hyperbranched macromolecules. Macromolecules, 2004, 37: 7893–7900

    Article  CAS  Google Scholar 

  6. Varley RJ. Toughening of epoxy resin systems using low-viscosity additives. Polym Int, 2004, 53: 78–84

    Article  CAS  Google Scholar 

  7. Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules, 2007, 40: 6257–6267

    Article  CAS  Google Scholar 

  8. Liu YH, Wang YY, Jing XL. Hyperbranched polymers as modifiers for thermoset resins. J Polym Mater, 2005, 22: 159–168

    CAS  Google Scholar 

  9. Sideratou Z, Tziveleka LA, Kontoyianni C, Tsiourvas D, Paleos CM. Design of functional dendritic polymers for application as drug and gene delivery systems. Gene Ther Mol Biol, 2006, 10A: 71–94

    Google Scholar 

  10. Cheng KC, Chuang TH, Chang JS, Guo W, Su WF. Effect of feed rate on structure of hyperbranched polymers formed by self-condensing vinyl polymerization in semibatch reactor. Macromolecules, 2005, 38: 8252–8257

    Article  CAS  Google Scholar 

  11. Jin M, Lu R, Bao CY, Xu TH, Zhao YY. Synthesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization. Polymer, 2004, 45: 1125–1131

    Article  CAS  Google Scholar 

  12. Ren Q, Gong FH, Jiang BB, Zhang DL, Fang JB, Guo FD. Preparation of hyperbranched copolymers of maleimide inimer and styrene by ATRP. Polymer, 2006, 47: 3382–3389

    Article  CAS  Google Scholar 

  13. Bannister I, Billingham NC, Armes SP, Rannard SP, Findlay P. Development of branching in living radical copolymerizations of vinyl and divinyl monomers. Macromolecules, 2006, 39: 7483–7492

    Article  CAS  Google Scholar 

  14. Sunder A, Frey H, Mulhaupt R. Hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromol Symp, 2000, 153: 187–196

    Article  CAS  Google Scholar 

  15. Kim BS, Im JS, Baek ST, Lee JO, Azuma Y, Yoshinaga K. Synthesis and characterization of crosslinked hyperbranched polyglycidol hydrogel films. J Macromol Sci, Part A: Pure Appl Chem, 2006, 43: 829–839

    Article  CAS  Google Scholar 

  16. Scheel A, Komber H, Voit B. Synthesis of Boc protected block copolymers based on para-hydroxystyrene via NMRP. Macromol Symp, 2004, 210: 111–120

    Article  Google Scholar 

  17. Czupik M, Fossum E. Manipulations of the molecular weight and branching structure of hyperbranched poly(arylene ether phosphine oxide)s prepared via an A2 + B3 approach. J Polym Sci, Part A: Polym Chem, 2003, 41: 3871–3881

    Article  CAS  Google Scholar 

  18. Gao C, Yan DY. Synthesis of hyperbranched polymers from commercially available A2 and BB′2 type monomers. Chem Commun, 2001, 107–108

  19. Emrick T, Chang HT, Fréchet JMJ. An A2+B3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules, 1999, 32: 6380–6382

    Article  CAS  Google Scholar 

  20. Carothers WH. Polymers and polyfunctionality. Trans Faraday Soc, 1936, 32: 39–53

    Article  CAS  Google Scholar 

  21. van Benthem RATM, Hofland A, Peerlings HWI, Meijer EW. Ideally selective diisocyanate building blocks — New perspectives for dendrimers and coating binders. Prog Org Coat, 2003, 48: 164–176

    Article  Google Scholar 

  22. Li XR, Zhan J, Li YS. Facile syntheses and characterization of hyperbranched poly(ester-amide)s from commercially available aliphatic carboxylic anhydride and multihydroxyl primary amine. Macromolecules, 2004, 37: 7584–7594

    Article  CAS  Google Scholar 

  23. Li XR, Zhan J, Lin Y, Li YG, Li YS. Facile synthesis and characterization of aromatic and semi-aromatic hyperbranched poly(ester-amide)s. Macromolecules, 2005, 38: 8235–8243

    Article  CAS  Google Scholar 

  24. Somvársky J, Dušek K. Kinetic Monte Carlo simulation of network formation. Polym Bull, 1994, 33: 377–384

    Article  Google Scholar 

  25. Somvársky J, Dušek K, Smrková M. Kinetic modelling of network formation: Size-dependent static effects. Comput Theor Polym Sci, 1998, 8: 201–208

    Article  Google Scholar 

  26. Dušek K, Somvársky J, Smrková M. Role of cyclization in the degree-of-polymerization distribution of hyperbranched polymers modelling and experiments. Polym Bull, 1999, 42: 489–496

    Article  Google Scholar 

  27. Galina H, Lechowicz JB, Walczak M. Kinetic Modeling of hyperbranched polymerization involving an AB2 monomer reacting with substitution effect. Macromolecules, 2002, 35: 3253–3260

    Article  CAS  Google Scholar 

  28. Galina H, Lechowicz JB, Walczak M. Model of hyperbranched polymerization involving AB(2) monomer and B-3 core molecules both reacting with substitution effect. Macromolecules, 2002, 35: 3261–3265

    Article  CAS  Google Scholar 

  29. Schmaljohann D, Voit B. Kinetic evaluation of hyperbranched A2 + B3 polycondensation reactions. Macromol Theory Simul, 2003, 12: 679–689

    Article  CAS  Google Scholar 

  30. Reisch A, Komber H, Voit B. Kinetic analysis of two hyperbranched A2 + B3 polycondensation reactions by NMR spectroscopy. Macromolecules, 2007, 40: 6846–6858

    Article  CAS  Google Scholar 

  31. Unal S, Oguz C, Yilgor E, Gallivan M, Long TE, Yilgor I. Understanding the structure development in hyperbranched polymers prepared by oligomeric A2 + B3 approach: comparison of experimental results and simulations. Polymer, 2005, 46: 4533–4543

    CAS  Google Scholar 

  32. Richards EL, Martin D, Buzza A, Davies GR. Monte Carlo simulation of random branching in hyperbranched polymers. Macromolecules, 2007, 40: 2210–2218

    Article  CAS  Google Scholar 

  33. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 1977, 81: 2340–2347

    Article  CAS  Google Scholar 

  34. Kurdikar DL, Somvársky J, Dušek K, Peppas NA. Development and evaluation of a Monte Carlo technique for the simulation of multifunctional polymerizations. Macromolecules, 1995, 28: 5910–5920

    Article  CAS  Google Scholar 

  35. Flory PJ. Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc, 1941, 63: 3083–3090

    Article  CAS  Google Scholar 

  36. Gooden JK, Gross ML, Mueller A, Stefanescu AD, Wooley KL. Cyclization in hyperbranched polymer syntheses: characterization by MALDI-TOF mass spectrometry. J Am Chem Soc, 1998, 120: 10180–10186

    Article  CAS  Google Scholar 

  37. Baek JB, Harris FW. Hyperbranched polyphenylquinoxalines (PPQs) from self-polymerizable AB2 and A2B monomers. Macromolecules, 2005, 38: 297–306

    Article  CAS  Google Scholar 

  38. Zhu X, Jaumann M, Peter K, Moller M, Melian C, Adams-Buda A, Demco DE, Blumich B. One-pot synthesis of hyperbranched polyethoxysiloxanes. Macromolecules, 2006, 39: 1701–1708

    Article  CAS  Google Scholar 

  39. Kricheldorf HR, Hobzova R, Vakhtangishvili L, Schwarz G. Multicyclic poly(ether ketone)s obtained by polycondensation of 2,6,4′-trifluorobenzophenone with various diphenols. Macromolecules, 2005, 38: 4630–4637

    Article  CAS  Google Scholar 

  40. Fowler RH, Guggehneim EA. Statistical Thermodynamics. PressNew York: Cambridge University, 1939

  41. Flory PJ. Molecular size distribution in three-dimensional polymers. VI. Branched polymer containing A-R-Bf-1-type units. J Am Chem Soc, 1952, 74: 2718–2723

    Article  CAS  Google Scholar 

  42. Bansil R, Herrmann HJ, Stauffer D. Computer simulation of kinetics of gelation by addition polymerization in a solvent. Macromolecules, 1984, 17, 998–1004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueSheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, J., Lin, Y., Liu, X. et al. Monte Carlo simulation on kinetic behavior of one-pot hyperbranched polymerization based on AA*+CB2 . Sci. China Chem. 53, 2481–2489 (2010). https://doi.org/10.1007/s11426-010-4151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4151-4

Keywords

Navigation