Skip to main content
Log in

Theoretical studies of the transport property of oligosilane

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The transport mechanisms of four σ-conjugated systems were comparatively studied by combining ATK and Gaussian 03 calculations. It was found that the charge-doped oligosilane behaved in a different way from the boron doped and phosphorus doped oligosilanes in terms of the transmission property. The charge-doped oligosilane showed almost no conductivity owing to the damage of the electron transfer path by charge-doping. By contrast, the boron doped and phosphorus doped oligosilanes were demonstrated to be good semiconductors and NDR behavior was observed for them. This is a reasonable result after the analysis of the transmission spectra, MPSH states, energy gap, conjugation effect, and scattering effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279: 208–211

    Article  CAS  Google Scholar 

  2. Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl Phys Lett, 2001, 78: 2214–2216

    Article  CAS  Google Scholar 

  3. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST. Small-diameter silicon nanowires surface. Science, 2003, 299: 1874–1877

    Article  CAS  Google Scholar 

  4. Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289–1292

    Article  CAS  Google Scholar 

  5. Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett, 2004, 4: 51–54

    Article  CAS  Google Scholar 

  6. Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291: 851–853

    Article  CAS  Google Scholar 

  7. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM. Silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449: 885–889

    Article  CAS  Google Scholar 

  8. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech, 2008, 3: 31–35

    Article  CAS  Google Scholar 

  9. Cui Y, Duan X, Hu J, Lieber CM. Doping and electrical transport in silicon nanowires. J Phys Chem B, 2000, 104: 5213–5216

    Article  CAS  Google Scholar 

  10. Ma DDD, Lee CS, Lee ST. Scanning tunneling microscopic study of boron-doped silicon nanowires. Appl Phys Lett, 2001, 79: 2468–2470

    Article  CAS  Google Scholar 

  11. Lew KK. Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl Phys Lett, 2004, 85: 3101–3103

    Article  CAS  Google Scholar 

  12. Byon K, Tham D, Fisher JE, Johnson AT. Synthesis and postgrowth doping of silicon nanowires. Appl Phys Lett, 2005, 87: 193104(1)–193104(3)

    Article  Google Scholar 

  13. Wang D, Sheriff B, Heath JR. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett, 2006, 6: 1096–1100

    Article  CAS  Google Scholar 

  14. Ishikawa M, Ohshita J. Handbook of Organic Conductive Molecules and Polymers. New York: John Wiley & Sons, 1997. 685–717

    Google Scholar 

  15. Zhang G, Ma J, Jiang Y. Charge-doped and geteroatom-substituted polysilane, poly(vinylenedisilanylene), and poly(butadienylenedisi-lanylene): electronic structures and band gaps. J Phys Chem B, 2005, 109: 13499–13509

    Article  CAS  Google Scholar 

  16. George CB, Ratner MA, Lamber JB. Strong conductance variation in conformationally constrained oligosilane tunnel junctions. J Phys Chem A, 2007, 113: 3876–3880

    Article  Google Scholar 

  17. McDermott S, George CB, Fagas G, Greer JC, Ratner MA. Tunnel currents across silane diamines/dithiols and alkane diamines/dithiols: a comparative computational study. J phys Chem C, 2009, 113: 744–750

    Article  CAS  Google Scholar 

  18. Fagas G, Delaney Paul, Greer J. Independent particle descriptions of tunneling using the many-body quantum transport approach. Phys Rev B, 2006, 73: 241314(1)–241314(4)

    Article  Google Scholar 

  19. Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev, 1957, 1: 223–231

    Article  Google Scholar 

  20. Datta S. Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 1995. 293–315

    Google Scholar 

  21. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65: 165401(1)–165401(17)

    Article  Google Scholar 

  22. Xue Y, Datta S, Ratner MA. Green’s function approach to molecular electronic devices: general formalism. Chem Phys, 2002, 281: 151–170

    Article  CAS  Google Scholar 

  23. Stokbro K, Taylor J, Brandbyge M. Do Aviram-Ratner diodes rectify? J Am Chem Soc, 2003, 125: 3674–3675

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Pittsburgh

    Google Scholar 

  25. Kwon O, Mckee M. Theoretical calculations of band gaps in the aroaromatic structures of polythieno[3,4-b]benzene and polythieno[3,4-b] pyrazine. J Phys Chem A, 2000, 104: 7106–7112

    Article  CAS  Google Scholar 

  26. Foster JP, Weinhold F. Natural hybrid orbitals. J Am Chem Soc, 1980, 102: 7211–7218

    Article  CAS  Google Scholar 

  27. Carpenter JE, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins natural” bond orbital procedure. J Mol Struct (THEOCHEM), 1988, 169: 41–62

    Article  Google Scholar 

  28. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys, 1985, 83: 735–746

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  30. Grönbeck H, Curioni A, Andreoni W. Thiols and disulfides on the Au(111) surface: the headgroup—gold Interaction. J Am Chem Soc, 2000, 122: 3839–3842

    Article  Google Scholar 

  31. Johansson Å, Stafström S. Interactions between molecular wires and a gold surface. Chem Phys Lett, 2000, 322: 301–306

    Article  CAS  Google Scholar 

  32. Kaun CC, Larade B, Guo H. Electrical transport through oligophenylene molecules: a first-principles study of the length dependence. Phys Rev B, 2003, 67: 121411(1)–121411(4)

    Article  Google Scholar 

  33. Yin X, Liu H, Zhao J. Electronic transportation through asymmetrically substituted tour wires: studied by first principles non-equilibrium green’s function formulism. J Chem Phys, 2006, 125: 094711(1)–094711(6)

    Article  Google Scholar 

  34. Staykov A, Nozaki D, Yoshizawa K. Photoswitching of conductivity through a diarylperfluorocyclopentene nanowire. J Phys Chem C, 2007, 111: 3517–3521

    Article  CAS  Google Scholar 

  35. Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B, 2001, 63: 245407(1)–245407(13)

    Google Scholar 

  36. Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, G B, Liu F, Duan W. Intrinsic current—voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett, 2007, 7: 1469–1473

    Article  CAS  Google Scholar 

  37. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter, 2002, 14: 2745–2779

    Article  CAS  Google Scholar 

  38. ATK, Version 2.0.4, atomistix a/s, 2008, www.atomistix.com

  39. Yu JY, Chung SW, Heath JR. Silicon nanowires: preparation, device fabrication, and transport properties. J Phys Chem B, 2000, 104: 11864–11870

    Article  CAS  Google Scholar 

  40. Sen S, Chakrabarti S. Ab initio density functional study on negative differential resistance in a fused furan trimer. J Phys Chem C, 2008, 112: 1685–1693

    Article  CAS  Google Scholar 

  41. Koshida N, Matsumoto N. Fabrication and quantum properties of nanostructured silicon. Mater Sci Eng R. 2003, 40:169–205

    Article  Google Scholar 

  42. Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejon P. Theoretical study of the nonlinear conductance of dithiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comput Mater Sci, 2003, 27: 151–160

    Article  CAS  Google Scholar 

  43. Wu X, Li Q, Huang J. Nonequilibrium electronic transport of 4,4′-bipyridine molecular junction. J Chem Phys, 2005, 123: 184712(1)–184712(6)

    Google Scholar 

  44. Low FE, Pines D. Mobility of slow electrons in polar crystals. Phys Rev, 1955, 98: 414–418

    Article  CAS  Google Scholar 

  45. Chew GF, Low FE. Effective-range approach to the low-energy p-wave pion-nucleon interaction. Phys Rev, 1956, 101: 1570–1579

    Article  CAS  Google Scholar 

  46. Russel PJ, Birks TA, Lloyd-Lucas D. Confined Electrons and Photons. Burstein E, Weisbuch C, Ed. New York: Plenum Press, 1995. 113–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiLing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Yuan, H., Zhang, H. et al. Theoretical studies of the transport property of oligosilane. Sci. China Chem. 53, 2571–2580 (2010). https://doi.org/10.1007/s11426-010-4147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4147-0

Keywords

Navigation