Skip to main content
Log in

Non-Gaussian noise-enhanced stochastic rate oscillations in CO oxidation on nanometer-sized Pd particles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The effect of non-Gaussian colored noise (NGN), mainly its departure q from the Gaussian noise, on the optimal ISRO of CO oxidation on nanometer-sized Pd particles was studied. It was found that the ISRO in the absence of external noise can still be enhanced when the NGN is applied. Specifically, the ISRO varies with changing q and becomes more regular at an appropriate q value, and when q is optimal, the ISRO becomes the most regular. Because the departure q from the Gaussian noise determines the probability distribution function and hence may denote the types of noise, this result shows that different types of external noise can enhance the ISRO of CO oxidation, and non-Gaussian noise may enhance the ISRO more greatly than the Gaussian noise. Therefore, non-Gaussian noise could play more effective roles in the catalytic process of CO oxidation on nanometer-sized Pd particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys, 1998, 70: 223–287

    Article  CAS  Google Scholar 

  2. Yang LF, Hou ZH, Xin HW. Stochastic resonance in sur-face catalytic oxidation of carbon monoxide. J Chem Phys, 1998, 109: 2002–2005

    Article  CAS  Google Scholar 

  3. Yang LF, Hou ZH, Zhou BJ, Xin HW. Stochastic resonance in catalytic reduction of NO with CO on Pt(100). J Chem Phys, 1998, 109: 6456–6459

    Article  CAS  Google Scholar 

  4. Yang LF, Hou ZH, Xin HW. Stochastic resonance in the absence and presence of external signals for a chemical reaction. J Chem Phys, 1999, 110: 3591–3595

    Article  CAS  Google Scholar 

  5. Hou ZH, Yang LF, Xin HW. Stochastic bi-resonance without external signal in the CO + O2 catalytic oxidation reaction. J Chem Phys, 1999, 111: 1592–1594

    Article  CAS  Google Scholar 

  6. Suchorski Y, Beben J, Imbihl R. Local fluctuations during catalytic CO oxidation on Pt: a field emission study. Surf Sci, 1998, 405: L477

    Article  CAS  Google Scholar 

  7. Suchorski Y, Beben J, James EW, Evans JW, Imbihl R. Fluctuation-induced transitions in a bistable surface reaction: Catalytic CO oxidation on a Pt field emitter tip. Phys Rev Lett, 1999, 82: 1907–1910

    Article  CAS  Google Scholar 

  8. Reichert CH, Starke J, Eiswirth M. Stochastic model of CO oxidation on Platinum surfaces and deterministic limit. J Chem Phys, 2001, 115: 4829–4838

    Article  CAS  Google Scholar 

  9. Sachs C, Hildebrand M, Volkening S, Wintterlin J, Ertl G. Spatiotemporal self organization in a surface reaction: From the atomic to the mesoscopic scale. Science, 2001, 293: 1635–1638

    Article  CAS  Google Scholar 

  10. Slinko MM, Ukharskii AA, Peskov NV, Jaeger NI. Chaos and synchronization in heterogeneous catalytic systems: CO oxidation over Pd zeolite catalysts. Catal Today, 2001, 70: 341–357

    Article  CAS  Google Scholar 

  11. Peskov NV, Slinko MM, Jaeger NI. Stochastic model of reaction rate oscillations in the CO oxidation on nm-sized palladium particles. J Chem Phys, 2002, 116: 2098–2106

    Article  CAS  Google Scholar 

  12. Jaeger NJ, Peskov NV, Slinko MM. Analysis and simulation of the dynamics of catalyzed model reaction: CO oxidation on zeolite supported palladium. Kinet Catal, 2003, 44: 183–197

    Article  CAS  Google Scholar 

  13. Johánek V, Laurin M, Grant AM, Kasemo B, Henry CR, Libuda J. Fluctuations and bi-stabilities on catalyst nanoparticles. Science, 2004, 304: 1639–1644

    Article  Google Scholar 

  14. Gong YB, Hou ZH, Xin HW. Optimal particle size for reaction rate oscillation in CO oxidation on nanometer-sized palladium particles. J Phys Chem B, 2004, 108: 17796–17799

    Article  CAS  Google Scholar 

  15. Gong YB, Hou ZH, Xin HW. Internal noise stochastic resonance in NO reduction by CO on platinum surfaces. J Phys Chem A, 2005, 109: 2741–2745

    Article  CAS  Google Scholar 

  16. Schmid G, Goychuk I, Hanggi P. Stochastic resonance as a collective property of ion channel assemblies. EPL, 2001, 56: 22–28

    Article  CAS  Google Scholar 

  17. Schmid G, Goychuk I, Hanggi P. Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Phys Biol, 2004, 1: 61–66

    Article  CAS  Google Scholar 

  18. Yi M, Jia Y, Liu Q, Li JR, Zhu CL. Enhancement of internal-noise coherence resonance by modulation of external noise in a circadian oscillator. Phys Rev E, 2006, 73: 041923

    Article  Google Scholar 

  19. Gong YB, Xu B, Ma XG. Enhancement of stochastic reaction rate oscillations by external noise in CO oxidation on nanometer-sized Pd particles. Chem Phys Lett, 2008, 458: 351–354

    Article  CAS  Google Scholar 

  20. Xie YH, Gong YB, Xu B, Sun FW. Colored noise-enhanced intrinsic stochastic oscillations in CO oxidation on nanometer-sized Pd particles. Sci China Ser B: Chem, 2009, 52: 887–892

    Article  CAS  Google Scholar 

  21. Gong YB, Xie YH, Xu B, Ma XG, Enhancement of stochastic oscillations by colored noise or internal noise in NO reduction by CO on small platinum surfaces. J Chem Phys, 2008, 128: 124707

    Article  Google Scholar 

  22. Gong YB, Xu B, Ma XG, Dong YM, Yang CL. Enhancement of stochastic resonance induced by either internal or external noise in NO reduction on platinum surfaces. J Phys Chem C, 2007, 111: 4264–4268

    Article  CAS  Google Scholar 

  23. Gong YB, Xu B, Han JQ, Ma XG. Novel effect of coupled external and internal noise in stochastic resonance. Physica. A, 2008, 387: 407–412

    Article  CAS  Google Scholar 

  24. Wiesenfeld K, Pierson D, Pantazelou E, Dames C, Moss F. Stochastic resonance on a circle. Phys Rev Lett, 1994, 72: 2125–2129

    Article  Google Scholar 

  25. Dozaki D, Mar DJ, Grigg P, Collins JJ. Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields. Phys Rev Lett, 1999, 82: 2402–2405

    Article  Google Scholar 

  26. Gardiner CW. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Processes. New York: Springer-Verlag, 1985

    Google Scholar 

  27. Soldatov AV. Purely noise-induced phase transition in the model of gene selection with colored noise term. Mod Phys Lett B, 1993, 7: 1253–1261

    Article  Google Scholar 

  28. Wio HS, Toral R. Effect of non-Gaussian noise source in a noise-induced transition. Physica D, 2004, 193: 161–168

    Article  Google Scholar 

  29. Bustamante C, Liphardt J, Ritort F. The nonequilibrium thermodynamics of small systems. Phys Today, 2005, 58: 43–48

    Article  CAS  Google Scholar 

  30. Borland L. Ito-Langevin equations within generalized thermostatistics. Phys Lett A, 1998, 245: 67–72

    Article  CAS  Google Scholar 

  31. Borland L. The microscopic dynamics of the nonlinear Fokker-Planck equation: a phenomenological model. Phys Rev E, 1998, 57: 6634

    Article  CAS  Google Scholar 

  32. Fuentes MA, Toral R, Wio HS. Enhancement of stochastic resonance: The role of non-Gaussian noises. Physica A, 2001, 295: 114–122

    Article  Google Scholar 

  33. Fuentes MA, Wio HS, Toral R. Effective Markovian approximation for non-Gaussian noises: a path integral approach. Physica A, 2002, 303: 91–104

    Article  Google Scholar 

  34. Bouzat S, Wio HS. New aspects on current enhancement in Brownian motors driven by non-Gaussian noise. Physica A, 2005, 351: 69–79

    Article  Google Scholar 

  35. Majee P, Goswami G, Bag BC. Colored non-Gaussian noise induced resonant activation. Chem Phys Lett, 2005, 416: 256–260

    Article  CAS  Google Scholar 

  36. Wu D, Zhu S. Stochastic resonance in a bistable system with time-delay feedback and non-Gaussian noise. Phys Lett A, 2007, 363: 202–212

    Article  CAS  Google Scholar 

  37. Wu D, Luo X, Zhu S. Stochastic system with coupling non-Gaussian and Gaussian noise terms. Physica A, 2007, 373: 203–214

    Article  Google Scholar 

  38. Mangioni SE, Wio HS. A random walker on a ratchet potential: effect of a non-Gaussian noise. Eur Phys J B, 2008, 61: 67–73

    Article  CAS  Google Scholar 

  39. Gong YB, Xie YH, Hao YH. Coherence resonance induced by the deviation of non-Gaussian noise in coupled Hodgkin-Huxley neurons. J Chem Phys, 2009, 130: 165106

    Article  Google Scholar 

  40. Gong YB, Xie YH, Hao YH. Coherence resonance induced by non-Gaussian noise in a deterministic Hodgkin-Huxley neuron. Physica A, 2009, 388: 3759–3764

    Article  Google Scholar 

  41. Gong YB, Hao YH, Xie YH, Ma XG, Yang CL. Non-Gaussian noise optimized spiking activity of Hodgkin-Huxley neurons on random complex networks. Biophys Chem, 2009, 144: 88–93

    Article  CAS  Google Scholar 

  42. Gong YB, Xie YH, Hao YH. Multiple enhancements of rate oscillations by non-Gaussian noise in NO reduction with CO on Pt(100). Sci China Chem, 2010, 53: 226–230

    Article  CAS  Google Scholar 

  43. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 1977, 81: 2340–2361

    Article  CAS  Google Scholar 

  44. Gillespie DT. The chemical Langevin equation. J Chem Phys, 2000, 113: 297–306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Lin, X. & Hao, Y. Non-Gaussian noise-enhanced stochastic rate oscillations in CO oxidation on nanometer-sized Pd particles. Sci. China Chem. 53, 2343–2348 (2010). https://doi.org/10.1007/s11426-010-4140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4140-7

Keywords

Navigation