Skip to main content
Log in

Organostibine mediated controlled/living random copolymerization of styrene and methyl methacrylate

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The first example of organostibine mediated controlled/living random copolymerization of styrene (St) and methyl methacrylate (MMA) was achieved by heating a solution of St/MMA/organostibine mediator at 100 °C or St/MMA/organostibine mediator/AIBN with various monomer feed ratios at 60 °C. The addition of AIBN significantly decreased the reaction temperature and enhanced the rate of copolymerization. The structure of poly(St-co-MMA) was verified by 1H NMR. The reactivity ratios at 60 °C were determined by the extended Kelen-Tüdős method to be γSt = 0.40 and γMMA = 0.44. The ln([M]0/[M]) increased linearly with increasing reaction time. The number-average molecular weights of poly(St-co-MMA) increased linearly with conversion. Poly(St-co-MMA) with expected number-average molecular weight and low polydispersity index was formed. The living characteristic was further confirmed by chain-extension of poly(St-co-MMA) to form poly(St-co-MMA)-b-PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moad G, Rizzardo E, Thang SH. Toward living radical polymerization. Acc Chem Res, 2008, 41: 1133–1142

    Article  CAS  Google Scholar 

  2. Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci, 2007, 32: 93–146

    Article  CAS  Google Scholar 

  3. Sciannamea V, Jerome R, Detrembleur C. In situ nitroxide-mediated radical polymerization (NMP) processes: Their understanding and optimization. Chem Rev, 2008, 108: 1104–1126

    Article  CAS  Google Scholar 

  4. Matyjaszewski K, Xia JH. Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921–2990

    Article  CAS  Google Scholar 

  5. Mayadunne RTA, Rizzardo E, Chiefari J, Chong YK, Moad G, Thang SH. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules, 1999, 32: 6977–6980

    Article  CAS  Google Scholar 

  6. David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Use of iodocompounds in radical polymerization. Chem Rev, 2006, 106: 3936–3962

    Article  CAS  Google Scholar 

  7. Yamago S, Iida K, Yoshida J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc, 2002, 124: 2874–2875

    Article  CAS  Google Scholar 

  8. Yamago S, Ray B, Iida K, Yoshida J, Tada T, Yoshizawa K, Kwak Y, Goto A, Fukuda T. Highly versatile organostibine mediators for living radical polymerization. J Am Chem Soc, 2004, 126: 13908–13909

    Article  CAS  Google Scholar 

  9. Yamago S, Kayahara E, Kotani M, Ray B, Kwak Y, Goto A, Fukuda T. Highly controlled living radical polymerization through dual activation of organobismuthines. Angew Chem Int Edit, 2007, 46: 1304–1306

    Article  CAS  Google Scholar 

  10. Ray B, Kotani M, Yamago S. Highly controlled synthesis of poly (N-vinylpyrrolidone) and its block copolymers by organostibine-mediated living radical polymerization. Macromolecules, 2006, 39: 5259–5265

    Article  CAS  Google Scholar 

  11. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev, 2009, 109: 5051–5068

    Article  CAS  Google Scholar 

  12. Gu B, Liu SS, Leber JD, Sen A. Nitroxide-mediated copolymerization of methyl acrylate with 1-alkenes and norbornenes. Macromolecules, 2004, 37: 5142–5144

    Article  CAS  Google Scholar 

  13. De la Fuente JL, Fernandez-Garcia M, Fernandez-Sanz M, Madruga EL. A comparative study of methyl methacrylate/butyl acrylate copolymerization kinetics by atom-transfer and conventional radical polymerization. Macromol Rapid Commun, 2001, 22: 1415–1421

    Article  Google Scholar 

  14. Kubo K, Goto A, Sato K, Kwak Y, Fukuda T. Kinetic study on reversible addition-fragmentation chain transfer (RAFT) process for block and random copolymerizations of styrene and methyl methacrylate. Polymer, 2005, 46: 9762–9768

    Article  CAS  Google Scholar 

  15. Koumura K, Satoh K, Kamigaito M. Mn-2(CO)(10)-induced controlled/living radical copolymerization of methyl acrylate and 1-hexene in fluoroalcohol: High alpha-olefin content copolymers with controlled molecular weights. Macromolecules, 2009, 42: 2497–2504

    Article  CAS  Google Scholar 

  16. Gan LM, Lee KC, Chew CH, Ng SC, Gan LH. Copolymerization of styrene and methyl methacrylate in ternary oil-in-water microemulsions: monomer reactivity ratios and microstructures by 1H NMR and 13C NMR. Macromolecules, 1994, 27: 6335–6340

    Article  CAS  Google Scholar 

  17. Maxwell IA, Aerdts AM, German AL. Free radical copolymerization: An NMR investigation of current kinetic models. Macromolecules, 1993, 26: 1956–1964

    Article  CAS  Google Scholar 

  18. Kotani Y, Kamigaito M, Sawamoto M. Living random copolymerization of styrene and methyl methacrylate with a Ru(II) complex and synthesis of ABC-type “block-random” copolymers. Macromolecules, 1998, 31: 5582–5587

    Article  CAS  Google Scholar 

  19. Ziegler MJ, Matyjaszewski K. Atom transfer radical copolymerization of methyl methacrylate and n-butyl acrylate. Macromolecules, 2001, 34: 415–424

    Article  CAS  Google Scholar 

  20. Matyjaszewski K, Ziegler MJ, Arehart SV, Greszta D, Pakula T. Gradient copolymers by atom transfer radical copolymerization. J Phys Org Chem, 2000, 13: 775–786

    Article  CAS  Google Scholar 

  21. Kelen T, Tüdős F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. New improved linear graphic method. J Macromol Sci Chem, 1975, A9(1): 1–27

    Article  CAS  Google Scholar 

  22. Tüdős F, Kelen T, Földes-berezsnich T, Turcsányi B. Analysis of linear methods for determining copolymerization reactivity ratios. III. Linear graphic method for evaluating data obtained at high conversion levels. J Macromol Sci Chem, 1976, A10(8):1513–1540

    Google Scholar 

  23. Tüdős F, Kelen T. Analysis of the linear methods for determining copolymerization reactivity ratios. V. Planning of experiments. J Macromol Sci Chem, 1981, A16(7): 1283–1297

    Google Scholar 

  24. Uebel JJ, Dinan FJ. A reassessment of the 1H-NMR spectra of styrene/methyl methacrylate copolymers. J Polym Sci Polym Chem Ed, 1983, 21: 2427–2438

    Article  CAS  Google Scholar 

  25. Kale LT, O’Driscoll KF, Dinan FJ, Uebel, JJ. A reinvestigation of the reported 1H-NMR spectra of poly(styrene-co-methyl methacrylate). J Polym Sci Part A: Polym Chem, 1986, 24: 3145–3149

    Article  CAS  Google Scholar 

  26. Fukuda T, Ma YD, Inagaki H. Free-radical copolymerization. 3. Determination of rate constants of propagation and termination for styrene/methyl methacrylate system. A critical test of terminal-model kinetics. Macromolecules, 1985, 18: 17–26

    Article  CAS  Google Scholar 

  27. ASBrar P. Synthesis of styrene/methyl methacrylate copolymers by atom transfer radical polymerization: 2D NMR investigations. J Polym Sci Part A: Polym Chem, 2006, 44: 2076–2085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Li, J., Liu, Z. et al. Organostibine mediated controlled/living random copolymerization of styrene and methyl methacrylate. Sci. China Chem. 53, 2318–2323 (2010). https://doi.org/10.1007/s11426-010-4138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4138-1

Keywords

Navigation