Skip to main content
Log in

Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly

  • Articles
  • SPECIAL TOPIC / Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Spherical molecular brushes with amphiphilic heteroarms were facilely synthesized by grafting the arms of hydrophobic 2-azidoethyle palmitate and hydrophilic monoazide-terminated poly(ethylene glycol) onto the core of alkyne-modified hyperbranched polyglycerol (HPG) with high molecular weight (M n = 122 kDa) via one-pot parallel click chemistry. The parallel click grafting strategy was demonstrated to be highly efficient (∼100%), very fast (∼ 2 h) and well controllable to the amphilicity of molecular brushes. Through adjusting the feeding ratio of hydrophobic and hydrophilic arms, a series of brushes with different arm ratios were readily obtained. The resulting miktoarms hyperbranched polymer brushes (HPG-g-C16/PEG350) were characterized by hydrogen-nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) measurements. The spherical molecular brushes showed high molecular weights up to 230 kDa, and thus could be visualized by atomic force microscopy (AFM). AFM and dynamic laser light scattering (DLS) were employed to investigate the self-assembly properties of amphiphilic molecular brushes with closed proportion of hydrophobic and hydrophilic arms. The brushes could self-assemble hierarchically into spherical micelles, and network-like fibre structures, and again spherical micelles by addition of n-hexane into the dichloromethane or chloroform solution of brushes. In addition, this kind of miktoarms polymer brush also showed the ability of dye loading via host-guest encapsulation, which promises the potential application of spherical molecular brushes in supramolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang MF, Muller AHE. Cylindrical polymer brushes. J Polym Sci, Part A: Polym Chem, 2005, 43(16): 3461–3481

    Article  CAS  Google Scholar 

  2. Sheiko SS, Sumerlin BS, Matyjaszewski K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog Polym Sci, 2008, 33(7): 759–785

    Article  CAS  Google Scholar 

  3. Gao C, Zheng X. Facile synthesis and self-assembly of multiheteroarm hyperbranched polymer brushes. Soft Mater, 2009, 5(23): 4788–4796

    Article  CAS  Google Scholar 

  4. Knischka R, Lutz PJ, Sunder A, Mulhaupt R, Frey H. Functional poly(ethylene oxide) multiarm star polymers: Core-first synthesis using hyperbranched polyglycerol initiators. Macromolecules, 2000, 33(2): 315–320

    Article  CAS  Google Scholar 

  5. Burgath A, Sunder A, Neuner I, Mulhaupt R, Frey H. Multi-arm star block copolymers based on epsilon-caprolactone with hyperbranched polyglycerol core. Macromol Chem Phys, 2000, 201(7): 792–797

    Article  CAS  Google Scholar 

  6. Wan DC, Fu Q, Huang JL. Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles. J Appl Polym Sci, 2006, 101(1): 509–514

    Article  CAS  Google Scholar 

  7. Liu HJ, Chen Y, Shen Z, Frey H. Multiarm star polyglycerolblock-poly(HEMA) as a versatile precursor for the preparation of micellar nanocapsules with different properties. React Funct Polym, 2007, 67(2): 156–164

    Article  CAS  Google Scholar 

  8. Turk H, Shukla A, Rodrigues PCA, Rehage H, Haag R. Watersoluble dendritic core-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs. Chem Eur J, 2007, 13(15): 4187–4196

    Article  Google Scholar 

  9. Wan DC, Yuan JJ, Pu HT. Macromolecular nanocapsule derived from hyperbranched polyethylenimine (HPEI): Mechanism of guest encapsulation versus molecular parameters. Macromolecules, 2009, 42(5): 1533–1540

    Article  CAS  Google Scholar 

  10. Xu SJ, Luo Y, Graeser R, Warnecke A, Kratz F, Hauff P, Licha K, Haag R. Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic agents. Bioorg Med Chem Lett, 2009, 19(3): 1030–1034

    Article  CAS  Google Scholar 

  11. Xie MR, Dang JY, Shi JX, Han HJ, Song CM, Huang W, Zhang YQ. Synthesis and self-assembly of well-defined polymer brushes with high grafting density of hydrophobic poly(epsilon-caprolactone) and hydrophilic poly(2-(dimethylamino)ethyl methacrylate) side chains. Acta Chim Sinica, 2009, 67(8): 869–874

    CAS  Google Scholar 

  12. Xie MR, Dang JY, Han HJ, Wang WZ, Liu JW, He XH, Zhang YQ. Well-defined brush copolymers with high grafting density of amphiphilic side chains by combination of ROP, ROMP, and ATRP. Macromolecules, 2008, 41(23): 9004–9010

    Article  CAS  Google Scholar 

  13. Li ZY, Li P, Huang JL. Synthesis of amphiphilic copolymer brushes: Poly(ethylene oxide)-graft-polystyrene. J Polym Sci, Part A: Polym Chem, 2006, 44(15): 4361–4371

    Article  CAS  Google Scholar 

  14. Li CH, Ge ZS, Fang J, Liu SY. Synthesis and self-assembly of coil-rod double hydrophilic diblock copolymer with dually responsive asymmetric centipede-shaped polymer brush as the rod segment. Macromolecules, 2009, 42(8): 2916–2924

    Article  CAS  Google Scholar 

  15. Huang Y, Liu Q, Zhou X, Perrier Sb, Zhao Y. Synthesis of silica particles grafted with well-defined living polymeric chains by combination of raft polymerization and coupling reaction. Macromolecules, 2009, 42(15): 5509–5517

    Article  CAS  Google Scholar 

  16. Li YG, Zhang YQ, Yang D, Li YJ, Hu JH, Feng C, Zhai SJ, Lu GL, Huang XY. PAA-g-PPO amphiphilic graft copolymer: Synthesis and diverse micellar morphologies. Macromolecules, 2010, 43(1): 262–270

    Article  CAS  Google Scholar 

  17. Zhang YQ, Shen Z, Yang D, Feng C, Hu JH, Lu GL, Huang XY. Convenient synthesis of PtBA-g-PMA well-defined graft copolymer with tunable grafting density. Macromolecules, 2010, 43(1): 117–125

    Article  CAS  Google Scholar 

  18. Liu C, Zhang Y, Huang JL. Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core. Macromolecules, 2008, 41(2): 325–331

    Article  CAS  Google Scholar 

  19. Gao HF, Matyjaszewski K. Synthesis of low-polydispersity miktoarm star copolymers via a simple “Arm-First” method: Macromonomers as arm precursors. Macromolecules, 2008, 41(12): 4250–4257

    Article  CAS  Google Scholar 

  20. Gao HF, Matyjaszewski K. Synthesis of molecular brushes by “grafting onto” method: Combination of ATRP and click reactions. J Am Chem Soc, 2007, 129(20): 6633–6639

    Article  CAS  Google Scholar 

  21. Gao HF, Matyjaszewski K. Synthesis of star polymers by a combination of ATRP and the “click” coupling method. Macromolecules, 2006, 39(15): 4960–4965

    Article  CAS  Google Scholar 

  22. Zhong L, Zhou YF, Yan DY, Pan CY. Synthesis of a multi alternatingarm-containing dendritic star copolymer by RAFT and cationic ring-opening polymerization. Macromol Rapid Comm, 2008, 29(16): 1385–1391

    Article  CAS  Google Scholar 

  23. Killops KL, Campos LM, Hawker CJ. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J Am Chem Soc, 2008, 130(15): 5062–5064

    Article  CAS  Google Scholar 

  24. Wu J, He H, Gao C. Sliding supramolecular polymer brushes with tunable amphiphilicity: One-step parallel click synthesis and self-assembly. Macromolecules, 2010, 43(17): 7139–7146

    Article  CAS  Google Scholar 

  25. Gao C, Yan D. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29(3): 183–275

    Article  CAS  Google Scholar 

  26. Zhou L, Gao C, Xu WJ. Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phys, 2009, 210(12): 1011–1018

    Article  CAS  Google Scholar 

  27. Zhou L, Gao C, Xu WJ, Wang X, Xu YH. Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization. Biomacromolecules, 2009, 10(7): 1865–1874

    Article  CAS  Google Scholar 

  28. Calderon M, Quadir MA, Sharma SK, Haag R. Dendritic polyglycerols for biomedical applications. Adv Mater, 2010, 22(2): 190–218

    Article  CAS  Google Scholar 

  29. Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules, 2006, 39(22): 7708–7717

    Article  CAS  Google Scholar 

  30. Wilms D, Stiriba SE, Frey H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts Chem Res, 2010, 43(1): 129–141

    Article  CAS  Google Scholar 

  31. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40(11): 2004–2021

    Article  CAS  Google Scholar 

  32. Lutz JF. 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew Chem Int Ed, 2007, 46(7): 1018–1025

    Article  CAS  Google Scholar 

  33. Lee S, Spencer ND. Materials science — Sweet, hairy, soft, and slippery. Science, 2008, 319(5863): 575–576

    Article  CAS  Google Scholar 

  34. Jia ZF, Zhou YF, Yan DY. Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. J Polym Sci, Part A: Polym Chem, 2005, 43(24): 6534–6544

    Article  CAS  Google Scholar 

  35. Zhou YF, Yan DY. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: Progress, characteristics and perspectives. Chem Commun, 2009, 10: 1172–1188

    Article  Google Scholar 

  36. Adeli M, Haag R. Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms. J Polym Sci, Part A: Polym Chem, 2006, 44(19): 5740–5749

    Article  CAS  Google Scholar 

  37. Yan DY, Zhou YF, Hou J. Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303(5654): 65–67

    Article  CAS  Google Scholar 

  38. Ranganathan K, Deng R, Kainthan RK, Wu C, Brooks DE, Kizhakkedathu JN. Synthesis of thermoresponsive mixed arm star polymers by combination of RAFT and ATRP from a multifunctional core and its self-assembly in water. Macromolecules, 2008, 41(12): 4226–4234

    Article  CAS  Google Scholar 

  39. Gao C, He H, Zhou L, Zheng X, Zhang Y. Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mater, 2008, 21(2): 360–370

    Article  Google Scholar 

  40. Zhang Y, He H, Gao C. Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules, 2008, 41(24): 9581–9594

    Article  CAS  Google Scholar 

  41. Hong HY, Mai YY, Zhou YF, Yan DY, Chen Y. Synthesis and supramolecular self-assembly of thermosensitive amphiphilic star copolymers based on a hyperbranched polyether core. J Polym Sci, Part A: Polym Chem, 2008, 46(2): 668–681

    Article  CAS  Google Scholar 

  42. Runge MB, Lipscomb CE, Ditzler LR, Mahanthappa MK, Tivanski AV, Bowden NB. Investigation of the assembly of comb block copolymers in the solid state. Macromolecules, 2008, 41(20): 7687–7694

    Article  CAS  Google Scholar 

  43. Hermans TM, Broeren MAC, Gomopoulos N, van der Schoot P, van Genderen MHP, Sommerdijk N, Fytas G, Meijer EW. Self-assembly of soft nanoparticles with tunable patchiness. Nat Nanotechnol, 2009, 4(11): 721–726

    Article  CAS  Google Scholar 

  44. Zou JH, Ye XD, Shi WF. Crosslinkable vesicles self-assembled by amphiphilic hyperbranched polyester. Macromol Rapid Commun, 2005, 26(21): 1741–1745

    Article  CAS  Google Scholar 

  45. Schappacher M, Deffieux A. Atomic force microscopy imaging and dilute solution properties of cyclic and linear polystyrene combs. J Am Chem Soc, 2008, 130(44): 14684–14689

    Article  CAS  Google Scholar 

  46. Hans M, Mourran A, Henke A, Keul H, Moeller M. Synthesis, characterization, and visualization of high-molecular-weight poly(glycidolgraft-epsilon-caprolactone) starlike polymers. Macromolecules, 2009, 42(4): 1031–1036

    Article  CAS  Google Scholar 

  47. Liu C, Gao C, Yan D. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers13. Angew Chem Int Ed, 2007, 46(22): 4128–4131

    Article  CAS  Google Scholar 

  48. Kramer M, Stumbe JF, Turk H, Krause S, Komp A, Delineau L Prokhorova S, Kautz H, Haag R. pH-Responsive molecular nanocarriers based on dendritic core-shell architectures. Angew Chem Int Ed, 2002, 41(22): 4252–4256

    Article  CAS  Google Scholar 

  49. Wan DC, Fu Q, Huang JL. Synthesis of a thermoresponsive shell-crosslinked 3-layer onion-like polymer particle with a hyperbranched polyglycerol core. J Polym Sci, Part A: Polym Chem, 2005, 43(22): 5652–5660

    Article  CAS  Google Scholar 

  50. Elmer S L, Man S, Zimmerman S C. Synthesis of polyglycerol, porphyrin-cored dendrimers using click chemistry. Eur J Org Chem, 2008, 22: 3845–3851

    Article  Google Scholar 

  51. Kainthan RK, Mugabe C, Burt HM, Brooks DE. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: Ligand binding properties. Biomacromolecules, 2008, 9(3): 886–895

    Article  CAS  Google Scholar 

  52. Wang SW, Zhang B, Ai P, Zhu M, Wang W, Sa ZP, Ma LN, Li YP. Chemoenzymatic synthesis amphiphilic H-shaped copolymer and its self-assembly behavior. Sci China Ser B, 2009, 39(6): 518–524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Gao, C. Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly. Sci. China Chem. 53, 2461–2471 (2010). https://doi.org/10.1007/s11426-010-4134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4134-5

Keywords

Navigation