Skip to main content
Log in

Real-time detection of the interaction between anticancer drug daunorubicin and cancer cells by Au-MCNT nanocomposites modified electrodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this study, we have prepared the blending of gold nanoparticles-multiwalled nanotubes (Au-MCNTs) and then applied the new nanocomposites to modify the glassy carbon electrode (GCE) for highly sensitive detection of the interaction between anticancer drug daunorubicin (DNR) and cancer cells. Electrochemical analysis indicates that the Au-MCNT modified GCE shows high sensitivity and could track the real time response of cancer cells under DNR treatments. Therefore, this new nano-interface and Au-MCNT modified electrode could be explored as a rapid, highly sensitive, and convenient real-time detection strategy in cancer related research and would have prospect in other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and DNR. Biochem Pharma, 1999, 579(7): 727–741

    Article  Google Scholar 

  2. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol, 1994, 45(4): 649–656

    CAS  Google Scholar 

  3. Song M, Guo DD, Pan C, Jiang H, Chen C, Zhang RY, Gu ZZ, Wang XM. Application of poly(N-isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug. Nanotechnology, 2008, 19(2): 165102–165108

    Article  Google Scholar 

  4. He F, Shen Q, Jiang H, Zhou J, Cheng J, Guo DD, Li QN, Wang XM, Fu DG, Chen BA. Rapid identification and high sensitive detection of cancer cells on the gold nanoparticle interface by combined contact angle and electrochemical measurements. Talanta, 2009, 77(3): 1009–1014

    Article  CAS  Google Scholar 

  5. Shen Q, You SK, Park SG, Jiang H, Guo DD, Chen BA, Wang XM. Electrochemical biosensing for cancer cells based on CNT/TiO2 nanocomposites modified electrodes. Electroanalysis, 2008, 20(23): 2526–2530

    Article  CAS  Google Scholar 

  6. Song M, Zhang RY, Dai YY, Gao F, Chi HM, Lv G, Chen BA, Wang XM. The in vitro inhibition of multidrug resistance by combined nanoparticulate titanium dioxide and UV irradiation. Biomaterials, 2006, 27(23): 4230–4238

    Article  CAS  Google Scholar 

  7. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(7): 56–58

    Article  CAS  Google Scholar 

  8. Iijima S, Ichihashi T. Single shell carbon nanotubes of 1nm diameter. Nature, 1993, 363(6): 603–605

    Article  CAS  Google Scholar 

  9. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res, 2002, 35(12): 1096–1104

    Article  CAS  Google Scholar 

  10. Sinha N, Yeow JT. Carbon nanotubes for biomedical applications. IEEE T Nanobiosci, 2005, 4(2): 180–195

    Article  Google Scholar 

  11. Popov VN. Carbon nanotubes: Properties and application. Mat Sci Eng R, 2004, 43(3): 61–102

    Article  Google Scholar 

  12. Baughman RH, Zakhidov AA, Heer WA. Carbon nanotubes—the route toward applications. Science, 2002, 297(5582): 787–792

    Article  CAS  Google Scholar 

  13. Jaur MF, Renier A, Daubriac J. Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol, 2009, 6(1): 16–29

    Article  Google Scholar 

  14. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. drug delivery and biocompatibility issues. Nanomedicine, 2008, 4(3): 183–200

    CAS  Google Scholar 

  15. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol, 2005, 39(5): 1378–1383

    Article  CAS  Google Scholar 

  16. Kostas K. The long and short of carbon nanotube toxicity. Nat Biotechnol, 2008, 26(7): 774–776

    Article  Google Scholar 

  17. Gearheart LA, Ploehn HJ, Murphy CJ. Oligonucleotide adsorption to gold nanoparticles: A surface-enhanced Raman spectroscopy study of intrinsically bent DNA. J Phys Chem B, 2001, 105(50): 12609–12615

    Article  CAS  Google Scholar 

  18. Zhang RY, Wang XM. One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response. Chem Mater, 2007, 19(5): 976–978

    Article  CAS  Google Scholar 

  19. Li QN, Wang XM, Lu XH, Tian HE, Jiang H, Lv G, Guo DD, Wu CH, Chen BA. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials, 2009, 30(27): 4708–4715

    Article  CAS  Google Scholar 

  20. Jiang H, Wang XM. Highly sensitive detection of daunorubicin based on carbon nanotubes-drug supramolecular interaction. Electrochem Commun, 2009, 11(1): 126–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueMei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Wu, X., Zhao, J. et al. Real-time detection of the interaction between anticancer drug daunorubicin and cancer cells by Au-MCNT nanocomposites modified electrodes. Sci. China Chem. 54, 812–815 (2011). https://doi.org/10.1007/s11426-010-4123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4123-8

Keywords

Navigation