Skip to main content
Log in

“Smart” nanomaterials for cancer therapy

  • Reviews
  • Special Topic · Cancer Nanotechnology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recent development in nanotechnology has provided new tools for cancer therapy and diagnostics. Because of their small size, nanoscale devices readily interact with biomolecules both on the cell surface and inside the cell. Nanomaterials, such as fullerenes and their derivatives, are effective in terms of interactions with the immune system and have great potential as anticancer drugs. Comparatively, other nanomaterials are able to load active drugs to cancer cells by selectively using the unique tumor environment, such as their enhanced permeability, retention effect and the specific acidic microenvironment. Multifunctional and multiplexed nanoparticles, as the next generation of nanoparticles, are now being extensively investigated and are promising tools to achieve personalized and tailored cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart BW, Kleihues P. World Cancer Report. World Health Organization Press, Geneva, 2003

    Google Scholar 

  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer RP. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech, 2007, 2: 751–760

    Article  CAS  Google Scholar 

  3. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer, 2006, 6: 688–701

    Article  CAS  Google Scholar 

  4. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer, 2005, 5: 161–171

    Article  CAS  Google Scholar 

  5. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul, 2001, 41: 189–207

    Article  CAS  Google Scholar 

  6. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer, 2002, 2: 750–763

    Article  CAS  Google Scholar 

  7. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett, 2007, 7: 614–619

    Article  CAS  Google Scholar 

  8. Satoh M, Takayanagi I. Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. J Pharmacol Sci, 2006, 100: 513–518

    Article  CAS  Google Scholar 

  9. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature, 1985, 318: 162–163

    Article  CAS  Google Scholar 

  10. Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S. In vivo studies of fullerene based materials using endohedral metallofullerene radiotracers. Phys Rev Lett, 2000, 85: 5384–5387

    Article  CAS  Google Scholar 

  11. Xing GM, Zhang J, Zhao YL, Tang J, Zhang B, Gao XF, Yuan H, Qu L, Cao WB, Chai ZF, Ibrahim K, Su R. Influences of structural properties on stability of fullerenols. J Phys Chem B, 2004, 108(31): 11473–11479

    Article  CAS  Google Scholar 

  12. Chiang LY, Wang LY, Swirczewski JW, Soled S, Cameron S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J Org Chem, 1994, 59: 3960–3968

    Article  CAS  Google Scholar 

  13. Tang J, Xing GM, Yuan H, Cao WB, Jing L, Gao XF, Qu L, Cheng Y, Ye C, Zhao YL, Chai ZF, Ibrahim K, Qian HJ, Su R. Tuning electronic properties of metallic atom in bondage to a nanospace. J Phys Chem B, 2005, 108: 8779–8785

    Article  Google Scholar 

  14. Li W, Chen CY, Ye C, Wei TT, Zhao YL, Lao F, Chen Z, Meng H, Gao YX, Yuan H, Xing GM, Zhao F, Chai ZF, Zhang XJ, Yang FY, Han D, Tang XH, Zhang YG. The translocation of fullerene derivative into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19(12): 1–12

    CAS  Google Scholar 

  15. Tang J, Xing GM, Zhao F, Yuan H, Zhao, YL. Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications. J Nanosci Nanotechnol, 2007, 7: 1085–1101

    Article  CAS  Google Scholar 

  16. Yin JJ, Lao F, Fu P, Wamer WG, Zhao YL, Wang PC, Qiu Y, Sun BY, Xing GM, Dong JQ, Liang XJ, Chen CY. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30: 611–621

    Article  CAS  Google Scholar 

  17. Wang JX, Chen CY, Li B, Yu HW, Zhao YL, Sun J, Li YF, Xing GM, Yuan H, Tang J, Chen Z, Meng H, Gao YX, Ye C, Chai ZF, Zhu CF, Ma BC, Fang XH, Wan LJ. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharm, 2006, 71: 872–881

    Article  CAS  Google Scholar 

  18. Chen CY, Xing GM, Wang GX, Zhao YL, Li B, Jia G, Wang TC, Sun J, Xing L, Yuan H, Gao YX, Ye C, Chai ZF. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett, 2005, 5(10): 2050–2057

    Article  CAS  Google Scholar 

  19. Liang XJ, Meng H, Wang YZ, He HY, Meng J, Lu J, Wang PC, Zhao YL, Gao XY, Sun BY, Chen CY, Xing GM, Shen DW, Gottesmand MM, Wu Y, Yin JJ, Jia L. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Soc, 2010, 107(16): 7449–7454

    Article  CAS  Google Scholar 

  20. Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou GQ, Sun BY, Xing GM, Dong JQ, Zhao YL, Chai ZF, Chen CY. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials, 2009, 30: 3934–3945

    Article  CAS  Google Scholar 

  21. Meng H, Xing GM, Sun BY, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang XX, Long J, Chen CY, Liang XJ, Zhang N, Chai ZF, Zhao YL. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 2010, 4(5): 2773–2783

    Article  CAS  Google Scholar 

  22. Jiao F, Liu Y, Qu Y, Li W, Zhou GQ, Sun BY, Li YF, Zhao YL, Chen CY. Studies on antitumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon, 2010, 48: 2231–2243

    Article  CAS  Google Scholar 

  23. Zhu JD, Ji ZQ, Wang J, Sun RH, Zhang X, Gao Y, Sun HF, Liu YF, Wang Z, Li AD, Ma J, Wang TC, Jia G, Gu YQ. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small, 2008, 4(8): 1168–1175

    Article  CAS  Google Scholar 

  24. Liu Y, Jiao F, Qiu Y, Li W, Qu Y, Tian CX, Li YF, Bai R, Lao F, Zhao YL, Chai ZF, Chen CY. Immunostimulatory properties and enhanced TNF-α mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology, 2009, 20: 415102–415111

    Article  Google Scholar 

  25. Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res, 1997, 88: 1108–1116

    CAS  Google Scholar 

  26. Tabata Y, Ikada Y. Biological functions of fullerene. Pure Appl Chem, 1999, 71: 2047–2053

    Article  CAS  Google Scholar 

  27. Yang D, Zhao YL, Guo H, Li Y, Tewary P, Xing GM, Hou W, Oppenheim JJ, Zhang N. [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS nano, 2010, 4(2): 1178–1186

    Article  CAS  Google Scholar 

  28. Lao F, Li W, Han D, Qu Y, Liu Y, Zhao YL, Chen CY. Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology, 2009, 20: 225103–225112

    Article  Google Scholar 

  29. Lao F, Chen L, Li W, Ge CC, Qu Y, Sun QM, Zhao YL, Han D, Chen CY. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano, 2009, 3(11): 3358–3368

    Article  CAS  Google Scholar 

  30. Cho K, Wang X, Nie SM, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 2008, 14(5): 1310–1316

    Article  CAS  Google Scholar 

  31. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin, 2008, 58: 97–110

    Article  Google Scholar 

  32. Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova EN, Shemchukova OB, Goncharova ON, Arjakov SA, Alakhov VY, Kabanov AV. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: In vivo evaluation of anti-cancer activity. Br J Cancer, 1996, 74: 1545–1552

    CAS  Google Scholar 

  33. Nakanishi T, Fukushima S, Okamoto K, Suzukia M, Matsumurab Y, Yokoyamac M, Okanoc T, Sakurai Y, Kataokad K. Development of the polymer micelle carrier system for doxorubicin. J Control Release, 2001, 74: 295–302

    Article  CAS  Google Scholar 

  34. Tang N, Du GJ, Wang N, Liu CC, Hang HY, Liang W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst, 2007, 99(13): 1004–1015

    Article  CAS  Google Scholar 

  35. Yates CR, Hayes W. Synthesis and applications of hyperbranched polymers. European Polym J, 2004, 40(7): 1257–1281

    Article  CAS  Google Scholar 

  36. Morgan JR, Cloninger MJ. Heterogeneously functionalized dendrimers. Curr Opin Drug Dis, 2002, 5(6): 966–973

    CAS  Google Scholar 

  37. Kim YH, Beckerbauer R. Role of end-groups on the glass-transition of hyperbranched polyphenylene and triphenylbenzene derivatives. Macromolecules, 1994, 27(7): 1968–1971

    Article  CAS  Google Scholar 

  38. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JMJ, Dy EE, Szoka FC. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Soc, 2006, 103(45): 16649–16654

    Article  CAS  Google Scholar 

  39. Li YY, Dong HQ, Wang K, Shi DL, Zhang XZ, Zhuo RX. Resrarch progress on stimulus-responsive polymeric nanoparticles for biomedical applications. Sci China Chem, 2010, 40(3): 197–209

    CAS  Google Scholar 

  40. Yuan Q, Venkatasubramanian R, Hein S, Misra RD. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater, 2008, 4(4): 1024–37

    Article  CAS  Google Scholar 

  41. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 2005, 16: 691–707

    Article  CAS  Google Scholar 

  42. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun, 2005, 5: 571–577

    Article  Google Scholar 

  43. Zheng Y, Lao XM, Zhang HY, Chen YM, Chen MS, Yuan YF, Zhang YQ, Li JQ. Effects of carbon-coated iron nanocrystals combined with epirubicin on HepG-2 cells and its acute toxicity in mice. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(2): 176–179

    CAS  Google Scholar 

  44. Harris JM, Martin NE, Modi M. Pegylation: A novel process for modifying pharmacokinetics. Clin Pharmacokinet, 2001, 40: 539–551

    Article  CAS  Google Scholar 

  45. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci, 2003: 92: 1343–1355

    Article  CAS  Google Scholar 

  46. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000, 407: 249–257

    Article  CAS  Google Scholar 

  47. Yan EY, Ding Y, Chen CJ, Li RT, Hu Y, Jiang XQ. Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chem Commun, 2009, 19: 2718–2720

    Article  Google Scholar 

  48. Kim BS, Lee H, Min YH, Poon Z, Hammond PT. Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery. Chem Commun, 2009, 28(28): 4194–4196

    Article  Google Scholar 

  49. Sanjeeb KS, Ma WX, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer, 2004, 112(2): 335–340

    Article  Google Scholar 

  50. Tong L, Wei QS, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol, 2009, 85(1): 21–32

    Article  CAS  Google Scholar 

  51. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128(6): 2115–2120

    Article  CAS  Google Scholar 

  52. Chen JQ, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y. Gold nanocages as photothermal transducers for cancer treatment. Small, 2010, 6(7): 811–817

    Article  CAS  Google Scholar 

  53. Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A. Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis, 2007, 24(3): 191–200

    Article  Google Scholar 

  54. Wuanga SC, Neoha KG, Kanga ET, Pack DW, Leckband DE. HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. Biomaterials, 2008, 29(14): 2270–2279

    Article  Google Scholar 

  55. Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Soc, 2005. 102(33): 11600–11605

    Article  CAS  Google Scholar 

  56. Shao N, Lu SX, Wickstrom E, Panchapakesan B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology, 2007, 18(31): 315101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunYing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, C., Le Guyader, L. et al. “Smart” nanomaterials for cancer therapy. Sci. China Chem. 53, 2241–2249 (2010). https://doi.org/10.1007/s11426-010-4122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4122-9

Keywords

Navigation