Skip to main content
Log in

Nanotexture optimization by oxygen plasma of mesoporous silica thin film for enrichment of low molecular weight peptides captured from human serum

  • Articles
  • Special Topic · Cancer Nanotechnology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The optimization of mesoporous silica thin films by nanotexturing using oxygen plasma versus thermal oxidation was investigated. Calcination in oxygen plasma provides superior control over pore formation with regard to the pore surface and higher fidelity to the structure of the polymer template. The resulting porous film offers an ideal substrate for the selective partitioning of peptides from complex mixtures. The improved chemico-physical characteristics of porous thin films (pore size distribution, nanostructure, surface properties and pore connectivity) were systematically characterized with XRD, Ellipsometry, FTIR, TEM and N2 adsorption/desorption isotherm. The enrichment of low molecular weight proteins captured from human serum on mesoporous silica thin films fabricated by both methodologies was investigated by comparison of their MALDI-TOF MS profiles. This novel on-chip fractionation technology offers advantages in recovering the low molecular weight peptides from human serum, which has been recognized as an informative resource for early diagnosis of cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L. The case for early detection. Nat Rev Cancer, 2003, 3: 243–252

    Article  CAS  Google Scholar 

  2. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol, 2008, 5: 588–599

    Article  CAS  Google Scholar 

  3. Petricoin EF, Belluco C, Araujo RP, Liotta LA. The blood peptidome: A higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer, 2006, 6: 961–967

    Article  CAS  Google Scholar 

  4. Martin KJ, Fournier MV, Reddy GPV, Pardee AB. A need for basic research on fluid-based early detection biomarkers. Cancer Res, 2010, 70: 5203–5206

    Article  CAS  Google Scholar 

  5. Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, Marks J, Godwin A, Gorelik E, Jacobs I, Menon U, Lu K, Badgwell D, Bast RC Jr, Lokshin AE. Development of a multi-marker assay for early detection of ovarian cancer. J Clin Oncol, 2010, 28: 2159–2166

    Article  Google Scholar 

  6. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer, 2003, 3: 267–275

    Article  CAS  Google Scholar 

  7. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: Written in blood. Nature, 2003, 425: 905–905

    Article  CAS  Google Scholar 

  8. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature, 2008, 452: 571–579

    Article  CAS  Google Scholar 

  9. Ebert MPA, Meuer J, Wiemer JC, Schulz HU, Reymond MA, Traugott U, Malfertheiner P, Röcken C. Identification of gastric cancer patients by serum protein profiling. J Proteome Res, 2004, 3: 1261–1266

    Article  CAS  Google Scholar 

  10. Anderson NL, Anderson NG. The human plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics, 2002, 1: 845–867

    Article  CAS  Google Scholar 

  11. Davis MT, Auger PL, Patterson SD. Cancer biomarker discovery via low molecular weight serum profiling-are we following circular paths? Clin Chem, 2010, 56: 244–247

    Article  CAS  Google Scholar 

  12. Antwi K, Hostetter G, Demeure MJ, Katchman BA, Decker GA, Ruiz Y, Sielaff TD, Koep LJ, Lake DF. Analysis of the plasma peptidome from pancreas cancer patients connects a peptide in plasma to overexpression of the parent protein in tumors. J Proteome Res, 2009, 8: 4722–4731

    Article  CAS  Google Scholar 

  13. Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics, 2003, 2: 1096–1103

    Article  CAS  Google Scholar 

  14. Righetti PG, Castagna A, Antonioli P, Boschetti E. Prefractionation techniques in proteome analysis: The mining tools of the third millennium. Electrophoresis, 2005, 26: 297–319

    Article  CAS  Google Scholar 

  15. Jin W-H, Dai J, Li S-J, Xia Q-C, Zou H-F, Zeng R. Monolithic silica ODS capillary column with integrated nanoelectrospray ionization emitter for high efficient proteome analysis. J Proteome Res, 2005, 4: 613–619

    Article  CAS  Google Scholar 

  16. Fountoulakis M, Juranville JF, Jiang L, Avila D, Röder D, Jakob P, Berndt P, Evers S, Langen H. Depletion of the high-abundance · plasma proteins. Amino Acids, 2004, 27: 249–259

    Article  CAS  Google Scholar 

  17. Ramström M, Hagman C, Mitchell JK, Derrick PJ, Håkansson P, Bergquist J. Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res, 2005, 4: 410–416

    Article  Google Scholar 

  18. Dekker LJ, Bosman J, Burgers PC, van Rijswijk A, Freije R, Luider T, Bischoff R. Depletion of high-abundance proteins from serum by immunoaffinity chromatography: A MALDI-FT-MS study. J Chromatogr B, 2007, 847: 65–69

    Article  CAS  Google Scholar 

  19. Castagna A, Cecconi D, Sennels L, Rappsilber J, Guerrier L, Fortis F, Boschetti E, Lomas L, Righetti PG. Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res, 2005, 4: 1917–1930

    Article  CAS  Google Scholar 

  20. Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer, 2005, 5: 161–171

    Article  CAS  Google Scholar 

  21. Cheng MM-C, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol, 2006, 10: 11–19

    Article  CAS  Google Scholar 

  22. Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M. Wiley Interdiscip Rev: Nanomed Nanobiotechnol, 2010, 9999: n/a

  23. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine — challenge and perspectives. Angew Chem Int Ed Engl, 2009, 48: 872–897

    Article  CAS  Google Scholar 

  24. Hu Y, Bouamrani A, Tasciotti E, Li L, Liu X, Ferrari M. Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. ACS Nano, 2010, 4: 439–451

    Article  CAS  Google Scholar 

  25. Bouamrani A, Hu Y, Tasciotti E, Li L, Chiappini C, Liu X, Ferrari M. Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome. Proteomics, 2010, 10: 496–505

    Article  CAS  Google Scholar 

  26. Gaspari M, Ming-Cheng Cheng M, Terracciano R, Liu X, Nijdam AJ, Vaccari L, di Fabrizio E, Petricoin EF, Liotta LA, Cuda G, Venuta S, Ferrari M. Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J Proteome Res, 2006, 5: 1261–1266

    Article  CAS  Google Scholar 

  27. Geho D, Ming-Cheng Cheng M, Killian K, Lowenthal M, Ross S, Frogale K, Nijdam J, Lahar N, Johann D, Herrmann P, Whiteley G, Ferrari M, Petricoin E, Liotta L. Fractionation of serum components using nanoporons substuates. Bioconjugate Chem, 2006, 17: 654–661

    Article  CAS  Google Scholar 

  28. Terracciano R, Gaspari M, Testa F, Pasqua L, Tagliaferri P, Cheng MM-C, Nijdam AJ, Petricoin EF, Liotta LA, Cuda G, Ferrari M, Venuta S. Fractionation of serum components using nanoporous substrates. Proteomics, 2006, 6: 3243–3250

    Article  CAS  Google Scholar 

  29. Brinker CJ, Lu Y, Sellinger A, Fan H. Evaporation-Induced self-assembly: Nanostructures made easy. Adv Mater, 1999, 11: 579–585

    Article  CAS  Google Scholar 

  30. Zhao D, Yang P, Melosh N, Feng J, Chmelka BF, Stucky GD. Continuous mesoporous silica films with highly ordered large pore structures. Adv Mater, 1998, 10: 1380–1385

    Article  CAS  Google Scholar 

  31. Wan Y, Shi Y, Zhao D. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun, 2007, 897–926

  32. Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 1997, 389: 364–368

    Article  CAS  Google Scholar 

  33. Yang ZL, Lu YF, Yang ZZ. Mesoporous materials: tunable structure morphology and composition. Chem Commun, 2009, 2270–2277

  34. Gomez-Vega JM, Teshima K, Hozumi A, Sugimura H, Takai O. Mesoporous silica thin films produced by calcination in oxygen plasma. Surf Coat Technol, 2003, 169–170: 504–507

    Article  Google Scholar 

  35. Zhang J, Palaniappan A, Su X, Tay FEH. Mesoporous silica thin films prepared by argon plasma treatment of sol-gel-derived precursor. Appl Surf Sci, 2005, 245: 304–309

    Article  CAS  Google Scholar 

  36. Huang J, Ichinose I, Kunitake T, Nakao A. Preparation of nanoporous titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment. Langmuir, 2002, 18: 9048–9053

    Article  CAS  Google Scholar 

  37. Kros A, Gerritsen M, Sprakel VSI, Sommerdijk NAJM, Jansen JA, Nolte RJM. Biocompatibility of sol-gel matrices as biocoatings for implantable glucose sensors. Sens Actuators B, 2001, 81: 68–75

    Article  Google Scholar 

  38. Yao B, Zhang L. Preparation and characterization of mesoporous titania gel-monolith. J Mater Sci, 1999, 34: 5983–5987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Peng, Y., Brousseau, L. et al. Nanotexture optimization by oxygen plasma of mesoporous silica thin film for enrichment of low molecular weight peptides captured from human serum. Sci. China Chem. 53, 2257–2264 (2010). https://doi.org/10.1007/s11426-010-4121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4121-x

Keywords

Navigation