Skip to main content
Log in

Luminescent cyclometalated iridium(III) dipyridoquinoxaline indole complexes as biological probes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. −1.07 to −2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishida T, Hamada M, Inoue M, Wakahara A. Crystal and molecular- structure of 6-hydroxymelatonin, a final metabolite of tryptophan. Chem Pharm Bull, 1990, 38: 851–855

    CAS  Google Scholar 

  2. Hirata F, Hayaishi O. New degradative routes of 5-hydroxytryptophan and serotonin by intestinal tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun, 1972, 47: 1112–1129

    Article  CAS  Google Scholar 

  3. Hirata F, Hayaishi O, Tokuyama T, Senoh S. In-vitro and in-vivo formation of 2 new metabolites of melatonin. J Biol Chem, 1974, 249: 1311–1313

    CAS  Google Scholar 

  4. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol, 2002, 50: 309–332

    Article  Google Scholar 

  5. Niwa T, Ise M, Mitazaki T. Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am J Nephrol, 1994, 14: 207–212

    Article  CAS  Google Scholar 

  6. Bartel B. Auxin biosynthesis. Annu Rev Plant Physiol, 1997, 48: 49–64

    Google Scholar 

  7. Dolušić E, Kowalczyk M, Magnus V, Sandberg G, Normanly J. Biotinylated indoles as probes for indole-binding proteins. Bioconjugate Chem, 2001, 12: 152–162

    Article  Google Scholar 

  8. Lo KKW, Tsang KHK, Hui WK, Zhu N. Luminescent rhenium(I) diimine indole conjugates — photophysical, electrochemical and protein- binding properties. Chem Commun, 2003: 2704-2705

  9. Lo KKW, Tsang KHK, Hui WK, Zhu N. Synthesis, characterization, crystal structure, and electrochemical, photophysical, and protein-binding properties of luminescent rhenium(I) diimine indole complexes. Inorg Chem, 2005, 44: 6100–6110

    Article  CAS  Google Scholar 

  10. Lo KKW, Sze KS, Tsang KHK, Zhu N. Luminescent tricarbonylrhenium(I) dipyridoquinoxaline indole complexes as sensitive probes for indole-binding proteins. Organometallics, 2007, 26: 3440–3447

    Article  CAS  Google Scholar 

  11. Lo KKW, Lee TKM, Zhang KY. Luminescent probes for indole-binding proteins derived from ruthenium(II) polypyridine complexes. Inorg Chim Acta, 2006, 359: 1845–1854

    Article  CAS  Google Scholar 

  12. Lau JSY, Lee PK, Tsang KHK, Ng CHC, Lam YW, Cheng SH, Lo KKW. Luminescent cyclometallated iridium(III) polypyridine indole complexes — synthesis, photophysics, electrochemistry, protein-binding properties, cytotoxicity, and cellular uptake. Inorg Chem, 2009, 48: 708–719

    Article  CAS  Google Scholar 

  13. Sprouse S, King KA, Spellane PJ, Watts RJ. Photophysical effects of metal-carbon sigma-bonds in ortho-metalated complexes of Ir(III) and Rh(III). J Am Chem Soc, 1984, 106: 6647–6653

    Article  CAS  Google Scholar 

  14. King KA, Spellane PJ, Watts RJ. Excited-state properties of a triply ortho-metalated iridium(III) complex. J Am Chem Soc, 1985, 107: 1431–1432

    Article  CAS  Google Scholar 

  15. Didier P, Ortmans I, Kirsch-De Mesmaeker A, Watts RJ. Electrochemistry and absorption and emission-spectroscopy of new ortho-metalated complexes of Rh(III) and Ir(III) with the ligands 1,4,5,8-tetraazaphenanthrene and 1,4,5,8,9,12-hexaazatriphenylene. Inorg Chem, 1993, 32: 5239–5245

    Article  CAS  Google Scholar 

  16. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc, 2003, 125: 7377–7387

    Article  CAS  Google Scholar 

  17. Neve F, Crispini A, Campagna S, Serroni S. Synthesis, structure, photophysical properties, and redox behavior of cyclometalated complexes of iridium(III) with functionalized 2,2′-bipyridines. Inorg Chem, 1999, 338: 2250–2258

    Article  CAS  Google Scholar 

  18. Neve F, La Deda M, Crispini A, Bellusci A, Puntoriero F, Campagna S. Cationic cyclometalated iridium luminophores: photophysical, redox, and structural characterization. Organometallics, 2004, 23: 5856–5863

    Article  CAS  Google Scholar 

  19. Collin JP, Dixon IM, Sauvage JP, Williams JAG, Barigelletti F, Flamigni L. Synthesis and photophysical properties of iridium(III) bisterpyridine and its homologues: a family of complexes with a long-lived excited state. J Am Chem Soc, 1999, 121: 5009–5016

    Article  CAS  Google Scholar 

  20. Wilkinson AJ, Puschmann H, Howard JAK, Foster CE, Williams JAG. Luminescent complexes of iridium(III) containing N∧C∧N-coordinating terdentate ligands. Inorg Chem, 2006, 45: 8685–8699

    Article  CAS  Google Scholar 

  21. Avilov I, Minoofar P, Cornil J, De Cola L. Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(III) complexes: A joint theoretical and experimen tal study. J Am Chem Soc, 2007, 129: 8247–8258

    Article  CAS  Google Scholar 

  22. Obara S, Itabashi M, Okuda F, Tamaki S, Tanabe Y, Ishii Y, Nozaki K, Haga M. Highly phosphorescent iridium complexes containing both tridentate bis(benzimidazolyl)-benzene or -pyridine and bidentate phenylpyridine: Synthesis, photophysical properties, and theoretical study of Ir-bis(benzimidazolyl) benzene complex. Inorg Chem, 2006, 45: 8907–8921

    Article  CAS  Google Scholar 

  23. Polson M, Fracasso S, Bertolasi V, Ravaglia M, Scandola F. Iridium cyclometalated complexes with axial symmetry. Synthesis and photophysical properties of a trans-biscyclometalated complex containing the terdentate ligand 2,6-diphenylpyridine. Inorg Chem, 2004, 43: 1950–1956

    Article  CAS  Google Scholar 

  24. Zhao Q, Li L, Li F, Yu M, Liu Z, Yi T, Huang C. Aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes. Chem Commun, 2008: 685–687

  25. Lo KKW, Ng DCM, Chung CK. First examples of luminescent cyclometalated iridium(III) complexes as labeling reagents for biological substrates. Organometallics, 2001, 20: 4999–5001

    Article  CAS  Google Scholar 

  26. Lo KKW, Chung CK, Ng DCM, Zhu N. Syntheses, characterisation and photophysical studies of novel biological labelling reagents derived from luminescent iridium(III) terpyridine complexes. New J Chem, 2002, 26: 81–88

    Article  CAS  Google Scholar 

  27. Lo KKW, Chung CK, Lee TKM, Lui LH, Tsang KHK, Zhu N. New luminescent cyclometalated iridium(III) diimine complexes as biological labeling reagents. Inorg Chem, 2003, 42: 6886–6897

    Article  CAS  Google Scholar 

  28. Lo KKW, Chan JSW, Lui LH, Chung CK. Novel luminescent cyclometalated iridium(III) diimine complexes that contain a biotin moiety. Organometallics, 2004, 23: 3108–3116

    Article  CAS  Google Scholar 

  29. Lo KKW, Li CK, Lau JSY. Luminescent cyclometalated iridium(III) arylbenzothiazole biotin complexes. Organometallics, 2005, 24: 4594–4601

    Article  CAS  Google Scholar 

  30. Lo KKW, Chung CK, Zhu N. Synthesis, photophysical and electrochemical properties, and biological labeling studies of cyclometalated iridium(III) bis(pyridylbenzaldehyde) complexes: novel luminescent cross-linkers for biomolecules. Chem Eur J, 2003, 9: 475–483

    Article  CAS  Google Scholar 

  31. Lo KKW, Chung CK, Zhu N. Nucleic acid intercalators and avidin probes derived from luminescent cyclometalated iridium(III)-dipyridoquinoxaline and -dipyridophenazine complexes. Chem Eur J, 2006, 12: 1500–1512

    Article  CAS  Google Scholar 

  32. Lo KKW, Zhang KY, Chung CK, Kwok KY. Synthesis, photophysical and electrochemical properties, and protein-binding studies of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates. Chem Eur J, 2007, 13: 7110–7130

    Article  CAS  Google Scholar 

  33. Lo KKW, Zhang KY, Leung SK, Tang MC. Exploitation of the dual-emissive properties of cyclometalated iridium(III)-polypyridine complexes in the development of luminescent biological probes. Angew Chem Int Ed, 2008, 47: 2213–2216

    Article  CAS  Google Scholar 

  34. Lo KKW, Lau JSY. Cyclometalated iridium(III) diimine bis(biotin) complexes as the first luminescent biotin-based cross-linkers for avidin. Inorg Chem, 2007, 46: 700–709

    Article  CAS  Google Scholar 

  35. Zhang KY, Lo KKW. Synthesis, properties, and live-cell imaging studies of luminescent cyclometalated iridium(III) polypyridine complexes containing two or three biotin pendants. Inorg Chem, 2009, 48: 6011–6025

    Article  CAS  Google Scholar 

  36. Lo KKW, Lee PK, Lau JSY. Synthesis, characterization, and properties of luminescent organoiridium(III) polypyridine complexes appended with an alkyl chain and their interactions with lipid bilayers, surfactants, and living cells. Organometallics, 2008, 27: 2998–3006

    Article  CAS  Google Scholar 

  37. O’Donoghue KA, Kelly JM, Kruger PE. Unusual photophysical switching in a Ru(II) diimine DNA probe caused by amide functionalisation. Dalton Trans, 2004: 13–15

  38. Pfeiffer MJ, Hanna SB. Aminolysis of activated esters of indole-3-acetic acid in acetonitrile. J Org Chem, 1993, 58: 735–740

    Article  CAS  Google Scholar 

  39. Demas JN, Crosby GA. Measurement of photoluminescence quantum yields — review. J Phys Chem, 1971, 75: 991–1024

    Article  Google Scholar 

  40. Nakamaru K. Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(II) mixed-ligand complexes including 3,3′-dimethyl-2,2′-bipyridyl. Bull Chem Soc Jpn, 1982, 55: 2697–2705

    Article  CAS  Google Scholar 

  41. Carter DC, Ho JX. Structure of serum-albumin. Adv Protein Chem, 1994, 45: 153–203

    Article  CAS  Google Scholar 

  42. Okabe N, Adachi K. Binding characteristics of tryptophan-metabolites to bovine serum-albumin. Chem Pharm Bull, 1992, 40: 499–500

    CAS  Google Scholar 

  43. Lo KKW, Hui WK, Chung CK, Tsang KHK, Lee TKM, Li CK, Lau JS Y, Ng DCM. Luminescent transition metal complex biotin conjugates. Coord Chem Rev, 2006, 250: 1724–1736

    Article  CAS  Google Scholar 

  44. Lo KKW. Luminescent transition metal complexes as biological labels and probes. Struc Bonding, 2007, 123: 205–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Kam-Wing Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, K.KW., Leung, A.HH. Luminescent cyclometalated iridium(III) dipyridoquinoxaline indole complexes as biological probes. Sci. China Chem. 53, 2091–2098 (2010). https://doi.org/10.1007/s11426-010-4120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4120-y

Keywords

Navigation