Skip to main content
Log in

What are carbon nanotubes’ roles in anti-tumor therapies?

  • Reviews
  • Special Topic · Cancer Nanotechnology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Since their discovery, carbon nanotubes (CNTs) have become one of the most promising nanomaterials in many industrial and biomedical applications. Due to their unique physicochemical properties, CNTs have been proposed and actively exploited as multipurpose innovative carriers for cancer therapy. The aim of this article is to provide an overview of the status of applications, advantages, and up-to-date research and development of carbon nanotubes in cancer therapy with an emphasis on drug delivery, photothermal therapy, gene therapy, RNAi, and immune therapy. In addition, the issues of risk and safety of CNTs in cancer nanotechnology are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res, 2008, 68(16): 6652–6660

    Article  CAS  Google Scholar 

  2. Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y. Covalently combining carbon nanotubes with anticancer agent: Preparation and antitumor activity. ACS Nano, 2009, 3(9): 2740–2750

    Article  CAS  Google Scholar 

  3. Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun (Camb), 2010, 46(9): 1494–1496

    Article  Google Scholar 

  4. Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotubeconjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology, 2010, 21(2): 025102

    Article  Google Scholar 

  5. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun (Camb), 2008, (4): 459–461

  6. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed, 2009, 48(41): 7668–7672

    Article  CAS  Google Scholar 

  7. Lay CL, Liu HQ, Tan HR, Liu Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology, 2010, 21(6): 065101

    Article  Google Scholar 

  8. Murakami T, Sawada H, Tamura G, Yudasaka M, Iijima S, Tsuchida K. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine (Lond), 2008, 3(4): 453–463

    Article  CAS  Google Scholar 

  9. Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, Yudasaka M. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano, 2008, 2(10): 2057–2064

    Article  CAS  Google Scholar 

  10. Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M, Leonhardt A, Thomas J, Oswald S, Hoffmann V, Büchner B. Carbon nanotubes filled with a chemotherapeutic agent: A nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond), 2008, 3(2): 175–182

    Article  CAS  Google Scholar 

  11. Mahmood M, Karmakar A, Fejleh A, Mocan T, Iancu C, Mocan L, Iancu DT, Xu Y, Dervishi E, Li Z, Biris AR, Agarwal R, Ali N, Galanzha EI, Biris AS, Zharov VP. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine (Lond), 2009, 4(8): 883–893

    Article  CAS  Google Scholar 

  12. Weng X, Wang M, Ge J, Yu S, Liu B, Zhong J, Kong J. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol Biosyst, 2009, 5(10): 1224–1231

    Article  CAS  Google Scholar 

  13. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotubebased drug delivery. ACS Nano, 2009, 3(2): 307–316

    Article  CAS  Google Scholar 

  14. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc, 2008, 130(34): 11467–11476

    Article  CAS  Google Scholar 

  15. Yang F, Fu DL, Long J, Ni QX. Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses, 2008, 70(4): 765–767

    Article  CAS  Google Scholar 

  16. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30(30): 6041–6047

    Article  CAS  Google Scholar 

  17. Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano, 2010, 4(3): 1399–1408

    Article  CAS  Google Scholar 

  18. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 2009, 3(11): 3707–3713

    Article  CAS  Google Scholar 

  19. Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Y, Shuba M, Maksimenko S, Ritter U, Scharff P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp Oncol, 2010, 32(1): 48–50

    CAS  Google Scholar 

  20. Biris AS, Boldor D, Palmer J, Monroe WT, Mahmood M, Dervishi E, Xu Y, Li Z, Galanzha EI, Zharov VP. Nanophotothermolysis of multiple scattered cancer cells with carbon nanotubes guided by timeresolved infrared thermal imaging. J Biomed Opt, 2009, 14(2): 021007

    Article  Google Scholar 

  21. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino RJ, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci, 2009, 106(31): 12897–12902

    Article  CAS  Google Scholar 

  22. Torti SV, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti FM, Akman S, Liu J, Ajayan PM, Nalamasu O, Carroll DL. Thermal ablation therapeutics based on CN(x) multi-walled nanotubes. Int J Nanomedicine, 2007, 2(4): 707–714

    CAS  Google Scholar 

  23. Wang CH, Huang YJ, Chang CW, Hsu WM, Peng CA. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody. Nanotechnology, 2009, 20(31): 315101

    Article  Google Scholar 

  24. Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH 4th. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm, 2009, 6(4): 1092–1099

    Article  CAS  Google Scholar 

  25. Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperthermia, 2008, 24(6): 496–505

    Article  CAS  Google Scholar 

  26. Marches R, Chakravarty P, Musselman IH, Bajaj P, Azad RN, Pantano P, Draper RK, Vitetta ES. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalentlycoupled monoclonal antibodies. Int J Cancer, 2009, 125(12): 2970–2977

    Article  CAS  Google Scholar 

  27. Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook RD, Cavicchi RE. Avedisian Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9: 351

    Article  Google Scholar 

  28. Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci, 2008, 105(25): 8697–8702

    Article  CAS  Google Scholar 

  29. Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt, 2009, 14(2): 021009

    Article  Google Scholar 

  30. Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, 2009, 5(11): 1292–1301

    Article  CAS  Google Scholar 

  31. Kam NW, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci, 2005, 102(33): 11600–11605

    Article  CAS  Google Scholar 

  32. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino RJ, Olson J, Guthold M, Gmeiner WH. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano, 2009, 3(9): 2667–2673

    Article  CAS  Google Scholar 

  33. Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE, Curley SA. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12): 2654–2665

    Article  CAS  Google Scholar 

  34. Mashal A, Sitharaman B, Li X, Avti P, Sahakian A, Booske J, Hagness S. Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. IEEE Trans Biomed Eng, 2010, 57(8): 1831–1834

    Article  Google Scholar 

  35. Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev, 2010, 62(6): 633–649

    Article  CAS  Google Scholar 

  36. Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1alpha) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res, 2009, 2(4): 279–291

    Article  CAS  Google Scholar 

  37. Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small, 2009, 5(10): 1176–1185

    Article  CAS  Google Scholar 

  38. Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem, 2008, 3(6): 940–945

    Article  CAS  Google Scholar 

  39. Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu B, Li Q, He R, Hu G. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology, 2009, 20(12): 125101

    Article  Google Scholar 

  40. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol, 2005, 9(6): 674–679

    Article  CAS  Google Scholar 

  41. Berd D, Sato T, Maguire HC, Kairys JJ, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol, 2004, 22(3): 403–415

    Article  CAS  Google Scholar 

  42. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res, 2004, 64(14): 4973–4979

    Article  CAS  Google Scholar 

  43. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods, 2005, 2: 449–454

    Article  CAS  Google Scholar 

  44. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. Jama, 1994, 271(12): 907–913

    Article  CAS  Google Scholar 

  45. Rosenberg SA, Yang JC, White DE, Steinberg SM. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: Identification of the antigens mediating response. Ann Surg, 1998, 228(3): 307–319

    Article  CAS  Google Scholar 

  46. Chatterjee M, Draghici S, Tainsky MA. Immunotheranostics: Breaking tolerance in immunotherapy using tumor autoantigens identified on protein microarrays. Curr Opin Drug Discov Devel, 2006, 9(3): 380–385

    CAS  Google Scholar 

  47. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer, 2006, 6(1): 613–625

    Article  CAS  Google Scholar 

  48. Copier J, Dalgleish A. Overview of tumor cell-based vaccines. Int Rev Immunol, 2006, 25(5&6): 297–319

    Article  CAS  Google Scholar 

  49. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic Cells as vectors for therapy. Cell, 2001, 106(3): 271–274

    Article  CAS  Google Scholar 

  50. Emens LA. Roadmap to a Better Therapeutic tumor vaccine. Int Rev Immunol, 2006, 25(5/6): 415–443

    Article  CAS  Google Scholar 

  51. Schirrmacher V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: Improvement of patient survival based on improved antitumor immune memory. Cancer Immunol, Immunother, 2005, 54(6): 587–598

    Article  CAS  Google Scholar 

  52. Meng J, Yang M, Jia F, Kong H, Zhang WQ, Wang CY, Xing JM, Xie SS, Xu HY. Subcutaneous injection of water-soluble multiwalled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology, 2010, 21(14): 145104

    Article  Google Scholar 

  53. Meng J, Meng J, Duan J, Kong H, Li L, Wang C, Xie S, Chen S, Gu N, Xu H, Yang XD. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small, 2008, 4(9): 1364–1370

    Article  CAS  Google Scholar 

  54. VanHandel M, Alizadeh D, Zhang L, Kateb B, Bronikowski M, Manohara H, Badie B. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol, 2009, 208(1–2): 3–9

    Article  CAS  Google Scholar 

  55. Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: A valuable option? Pharm Res, 2009, 26(4): 746–769

    Article  CAS  Google Scholar 

  56. Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine, 2010, 6(2): 245–256

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiYan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Meng, J. & Kong, H. What are carbon nanotubes’ roles in anti-tumor therapies?. Sci. China Chem. 53, 2250–2256 (2010). https://doi.org/10.1007/s11426-010-4117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4117-6

Keywords

Navigation