Skip to main content
Log in

Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy

  • Articles
  • Special Topic · Cancer Nanotechnology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel methoxy-poly(ethylene glycol) modified nano-graphene oxide (NGO-mPEG) was designed and synthesized as a photosensitizer (PS) carrier for photodynamic therapy of cancer. NGO with a size below 200 nm was prepared using a modified Hummers’ method. NGO was observed by AFM to exhibit a structure with single-layer graphene oxide sheets down to a few nanometers in height. Hydrophilic mPEG conjugation of NGO (NGO-mPEG) was found to enhance solubility in cell culture media. No apparent cytotoxicity of the NGO-mPEG was observed towards MCF-7 carcinoma cell line. Zinc phthalocyanine (ZnPc), a photosensitizer for photodynamic therapy, was loaded in the NGO-PEG through π-π stacking and hydrophobic interactions, with the drug loading efficiency up to 14 wt%. Hydrophobic ZnPc was internalized in MCF-7 cells, exhibiting a pronounced phototoxicity in the cells under Xe light irradiation. The results indicate a great potential of NGO-mPEG for photodynamic therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmans D, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer, 2003, 3: 380–387

    Article  CAS  Google Scholar 

  2. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Laser Med Sci, 2009, 24: 259–268

    Article  CAS  Google Scholar 

  3. Hu XH, Feng YM, Lu JQ, Allison RR, Cuenca RE, Downie GH, Sibata CH. Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom. Photochem Photobiol, 2005, 81: 1460–1468

    Article  CAS  Google Scholar 

  4. Owens JW, Smith R, Robinson R, Robins M. Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorg Chim Acta, 1998, 279: 226–231

    Article  CAS  Google Scholar 

  5. Cynthia MA, Wesley MS, Johan EVL. Current status of phthalocya nines in the photodynamic therapy of cancer. J Porphyr Phthalocya, 2001, 5: 161–169

    Article  Google Scholar 

  6. Sibani SA, McCarron PA, Woolfson AD, Donnelly RF. Photosensitiser delivery for photodynamic therapy. Part 2: Systemic carrier platforms. Expert Opin Drug Del, 2008, 5: 1241–1254

    Article  CAS  Google Scholar 

  7. Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for treatment of malignant tumors. Cancer Res, 1978, 38: 2628–2635

    CAS  Google Scholar 

  8. Zhang M, Murakami T, Ajima K, Tsuchida K, Sandanayaka ASD, Ito O, Iijima S, Yudasaka M. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc Natl Acad Sci USA, 2008, 105: 14773–14778

    Article  CAS  Google Scholar 

  9. Dhami S, Phillips D. Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles. J Photoch Photobio A, 1996, 100: 77–84

    Article  CAS  Google Scholar 

  10. Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photoch Photobio B, 2002, 66: 89–106

    Article  CAS  Google Scholar 

  11. Vrouenraets MB, Visser GWM, Snow GB, van Dongen GAMS. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res, 2003, 23: 505–522

    CAS  Google Scholar 

  12. van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliver Rev, 2004, 56: 9–16

    Article  Google Scholar 

  13. Derycke ASL, de Witte PAM. Liposomes for photodynamic therapy. Adv Drug Deliver Rev, 2004, 56: 17–30

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  CAS  Google Scholar 

  15. Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, Guo J, Dai HJ. N-Doping of graphene through electrothermal reactions with ammonia. Science, 2009, 324: 768–771

    Article  CAS  Google Scholar 

  16. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chem Rev, 2010, 110: 132–145

    Article  CAS  Google Scholar 

  17. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240

    Article  CAS  Google Scholar 

  18. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew Chem Int Edit, 2010, 49: 2114–2138

    Article  CAS  Google Scholar 

  19. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res, 2008, 1: 203–212

    Article  CAS  Google Scholar 

  20. Yang XY, Zhang XY, Liu ZF, Ma YF, Huang Y, Chen Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C, 2008, 112: 17554–17558

    Article  CAS  Google Scholar 

  21. Zhang L, Liang JJ, Huang Y, Ma YF, Wang Y, Chen YS. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 2009, 47: 3365–3368

    Article  CAS  Google Scholar 

  22. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191–1196

    Article  CAS  Google Scholar 

  23. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 2007, 19: 4396–4404

    Article  CAS  Google Scholar 

  24. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 2008, 3: 101–105

    Article  CAS  Google Scholar 

  25. Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small, 2009, 5: 2285–2290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongLu Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Zhao, Z., Wen, H. et al. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci. China Chem. 53, 2265–2271 (2010). https://doi.org/10.1007/s11426-010-4114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4114-9

Keywords

Navigation