Skip to main content
Log in

Organic ammonium ion-occluded flexible coordination polymers: Thermal activation, structure transformation and proton transfer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Solvothermal reactions of 1,3,5-benzenetricarboxylic acid (H3btc) with cadmium acetate or zinc acetate yielded two compounds formulated as (Me2NH2)[Cd(btc)]·DMA (1) (btc = 1,3,5-benzenetricarboxylate, DMA = N,N-dimethylacetamide) and (Me2NH2)[Zn(btc)]·DMF (2) (DMF = N,N-dimethylformamide). Both are 3-D frameworks with the rutile topology, which are constructed from six-connected dimeric metal cores and three-connected btc linkers. The solvent molecules and counter cations are located in the 1-D channels of the frameworks. A slight difference between the two compounds is the different connectivity modes of the metal atoms with the carboxylate groups of the ligands. However, this slight difference results in distinct flexibilities of the two frameworks. Variable-temperature powder X-ray diffraction studies revealed that the framework of 1 collapses when heated at 180 °C with loss of the guest species, but compound 2 undergoes two structural transformations below 380 °C. Thermogravimetry-infrared spectroscopy analysis for 2 showed that the two structural transformations are induced by separate losses of solvent molecules and counter cations, and that the dimethylammonium cations are eliminated as neutral dimethylamine molecules. IR spectroscopy demonstrated that the protons are transferred from the counter cations onto the uncoordinated carboxylate oxygen atoms on the channel walls. Sorption and proton conduction studies have also been performed for the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523–527

    Article  CAS  Google Scholar 

  2. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042

    Article  CAS  Google Scholar 

  3. Huang XC, Lin YY, Zhang JP, Chen XM. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559

    Article  CAS  Google Scholar 

  4. Ma SQ, Sun DF, Simmons JM, Collier CD, Yuan DQ, Zhou HC. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc, 2008, 130: 1012–1016

    Article  CAS  Google Scholar 

  5. Chun H. Low-level self-assembly of open framework based on three different polyhedra: Metal-organic analogue of face-centered cubic dodecaboride. J Am Chem Soc, 2008, 130: 800–801

    Article  CAS  Google Scholar 

  6. Sumida K, Hill MR, Horike S, Dailly A, Long JR. Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J Am Chem Soc, 2009, 131: 15120–15121

    Article  CAS  Google Scholar 

  7. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982–986

    Article  CAS  Google Scholar 

  8. Chen BL, Ockwig NW, Millward AR, Contreras DS, Yaghi OM. High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew Chem Int Ed, 2005, 44: 4745–4749

    Article  CAS  Google Scholar 

  9. Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc, 2006, 128: 16876–16883

    Article  CAS  Google Scholar 

  10. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis. J Am Chem Soc, 2007, 129: 2607–2614

    Article  CAS  Google Scholar 

  11. Lee YG, Moon HR, Cheon YE, Suh MP. A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2 3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angew Chem Int Ed, 2008, 47: 7741–7745

    Article  CAS  Google Scholar 

  12. Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GKH. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun, 2009: 5230-5232

  13. Bourrelly S, Llewellyn PL, Serre C, Millange F, Loiseau T, Ferey G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc, 2005, 127: 13519–13521

    Article  CAS  Google Scholar 

  14. Maji TK, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater, 2007, 6: 142–148

    Article  CAS  Google Scholar 

  15. Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Ferey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science, 2007, 315: 1828–1831

    Article  CAS  Google Scholar 

  16. Tanaka D, Nakagawa K, Higuchi M, Horike S, Kubota Y, Kobayashi LC, Takata M, Kitagawa S. Kinetic gate-opening process in a flexible porous coordination polymer. Angew Chem Int Ed, 2008, 47: 3914–3918

    Article  CAS  Google Scholar 

  17. Chandler BD, Enright GD, Udachin KA, Pawsey S, Ripmeester JA, Cramb DT, Shimizu GKH. Mechanical gas capture and release in a network solid via multiple single-crystalline transformations. Nat Mater, 2008, 7: 229–235

    Article  CAS  Google Scholar 

  18. Zhang JP, Chen XM. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J Am Chem Soc, 2008, 130: 6010–6017

    Article  CAS  Google Scholar 

  19. Liu YL, Eubank JF, Cairns AJ, Eckert J, Kravtsov VC, Luebke R, Eddaoudi M. Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed, 2007, 46: 3278–3283

    Article  CAS  Google Scholar 

  20. Sava DF, Kravtsov VC, Nouar F, Wojtas L, Eubank JF, Eddaoudi M. Quest for zeolite-like metal-organic frameworks: On pyrimidinecarboxylate bis-chelating bridging ligands. J Am Chem Soc, 2008, 130: 3768–3770

    Article  CAS  Google Scholar 

  21. Nouar F, Eckert J, Eubank JF, Forster P, Eddaoudi M. Zeolite-like metal-organic frameworks (ZMOFs) as hydrogen storage platform: Lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J Am Chem Soc, 2009, 131: 2864–2870

    Article  CAS  Google Scholar 

  22. Bourgeat-Lami E, Di Renzo F, Fajula F, Mutin PH, Des Courieres T. Mechanism of the thermal decomposition of tetraethylammonium in zeolite β. J Phys Chem, 1992, 96: 3807–3811

    Article  CAS  Google Scholar 

  23. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev, 1997, 97: 2373–2420

    Article  CAS  Google Scholar 

  24. Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem Rev, 2003, 103: 663–701

    Article  CAS  Google Scholar 

  25. Yang S, Lin X, Blake AJ, Thomas KM, Hubberstey P, Champness NR, Schröder M. Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem Commun, 2008: 6108–6110

  26. Zhang J, Chen SM, Wu T, Feng PY, Bu XH. Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J Am Chem Soc, 2008, 130: 12882–12883

    Article  CAS  Google Scholar 

  27. Hao XR, Wang XL, Qin C, Su ZM, Wang EB, Lan YQ, Shao KZ. A 3D chiral nanoporous coordination framework consisting of homochiral nanotubes assembled from octuple helices. Chem Commun, 2007: 4620-4622

  28. Sun DF, Ke YX, Collins DJ, Lorigan GA, Zhou HC. Construction of robust open metal-organic frameworks with chiral channels and permanent porosity. Inorg Chem, 2007, 46: 2725–2734

    Article  CAS  Google Scholar 

  29. Sudik AC, Cote AP, Wong-Foy AG, O’Keeffe M, Yaghi OM. A metal-organic framework with a hierarchical system of pores and tetrahedral building blocks. Angew Chem Int Ed, 2006, 45: 2528–2533

    Article  CAS  Google Scholar 

  30. Yang SH, Lin X, Blake AJ, Walker GS, Hubberstey P, Champness NR, Schröder M. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nat Chem, 2009, 1: 487–493

    Article  CAS  Google Scholar 

  31. Ingleson MJ, Barrio JP, Bacsa J, Dickinson C, Park H, Rosseinsky MJ. Generation of a solid Bronsted acid site in a chiral framework. Chem Commun, 2008: 1287-1289

  32. Xie LH, Liu SX, Gao B, Zhang CD, Sun CY, Li DH, Su ZM. A three-dimensional porous metal-organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks. Chem Commun, 2005: 2402-2404

  33. Zhao XJ, Tao J. A three-dimensional zinc trimesate framework: [(CH3)2NH2][Zn(C9H3O6)]·(C3H7NO). Appl Organomet Chem, 2005, 19: 694–695

    Article  CAS  Google Scholar 

  34. Fang QR, Zhu GS, Xue M, Wang ZP, Sun JY, Qiu SL. Amine-templated assembly of metal-organic frameworks with attractive topologies. Cryst Growth Des, 2008, 8: 319–329

    Article  CAS  Google Scholar 

  35. Zhang ZH, Du M. Flexible and versatile anionic modules in the direction of 1-D, 2-D, and 3-D coordination frameworks by metalligand synergistic interactions. CrystEngComm, 2008, 10: 1350–1357

    Article  CAS  Google Scholar 

  36. Liu CM, Zuo JL, Zhang DQ, Zhu DB. Carboxylic acid-dependent assembly of neodymium-organic frameworks with attractive topologies and second-order nonlinear optical and/or magnetic properties. CrystEngComm, 2008, 10: 1674–1680

    Article  CAS  Google Scholar 

  37. Spek AL. Single-crystal structure validation with the program PLATON. J Appl Crystallogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  38. Bellamy LJ. The Infrared Spectra of Complex Molecules. New York: Wiley, 1958

    Google Scholar 

  39. Fang QR, Zhu GS, Jin Z, Xue M, Wei X, Wang DJ, Qiu SL. A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters. Angew Chem Int Ed, 2006, 45: 6126–6130

    Article  CAS  Google Scholar 

  40. Hou L, Lin YY, Chen XM. Porous metal-organic framework based on μ4-oxo tetrazinc clusters: Sorption and guest-dependent luminescent properties. Inorg Chem, 2008, 47: 1346–1351

    Article  CAS  Google Scholar 

  41. Kitaura R, Fujimoto K, Noro S, Kondo M, Kitagawa S. A pillaredlayer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1,2-di(4-pyridyl)glycol). Angew Chem Int Ed, 2002, 41: 133–135

    Article  CAS  Google Scholar 

  42. Yamada K, Yagishita S, Tanaka H, Tohyama K, Adachi K, Kaizaki S, Kumagai H, Inoue K, Kitaura R, Chang HC, Kitagawa S, Kawata S. Metal-complex assemblies constructed from the flexible hinge-like ligand H2bhnq: Structural versatility and dynamic behavior in the solid state. Chem Eur J, 2004, 10: 2648–2660

    Article  Google Scholar 

  43. Kreuer K-D, Paddison SJ, Spohr E, Schuster M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem Rev, 2004, 104: 4637–4678

    Article  CAS  Google Scholar 

  44. Bureekaew S, Horike S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, Yanai N, Kitagawa S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat Mater, 2009, 8: 831–836

    Article  CAS  Google Scholar 

  45. Hurd JA, Vaidhyanathan R, Thangadurai V, Ratcliffe CI, Moudrakovski IL, Shimizu GKH. Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. Nat Chem, 2009, 1: 705–710

    Article  CAS  Google Scholar 

  46. Yamada T, Sadakiyo M, Kitagawa H. High proton conductivity of one-dimensional ferrous oxalate dihydrate. J Am Chem Soc, 2009, 131: 3144–3145

    Article  CAS  Google Scholar 

  47. Kreuer KD, Rabenau A, Weppner W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew Chem Int Ed, 1982, 21: 208–209

    Google Scholar 

  48. Agmon N. The Grotthuss mechanism. Chem Phys Lett, 1995, 244: 456–462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiePeng Zhang or XiaoMing Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Lin, J., Liu, X. et al. Organic ammonium ion-occluded flexible coordination polymers: Thermal activation, structure transformation and proton transfer. Sci. China Chem. 53, 2144–2151 (2010). https://doi.org/10.1007/s11426-010-4107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4107-8

Keywords

Navigation