Skip to main content
Log in

High activity in catalytic cracking of large molecules over micro-mesoporous silicoaluminophosphate with controlled morphology

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel micro-mesoporous silicoaluminophosphate (MUS-5) with controlled morphology has been first synthesized in a two-step route. The physical properties of the silicoaluminophosphate were characterized using XRD, SEM, TEM, nitrogen adsorption-desorption and NH3-TPD techniques. When the pH value of the solution system was varied in the range from 2.0 to 5.0, three different morphologies of silicoaluminophosphate including chain-like, flower-like and barrel-like morphology were obtained. Catalytic tests showed that the silicoaluminophosphate exhibited higher catalytic activity compared with the conventional microporous SAPO-5 under the same conditions for catalytic cracking of 1,3,5-triisopropylbenzene heavy aromatics. The remarkable catalytic reactivity was mainly attributed to the presence of the hierarchical porosity in the silicoaluminophosphate catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem Rev, 2003, 103: 663–701

    Article  CAS  Google Scholar 

  2. Wilson ST, Lok BM, Messian CA, Cannan TR, Flanigen EM. Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids. J Am Chem Soc, 1982, 104: 1146–1147

    Article  CAS  Google Scholar 

  3. Pastore HO, Coluccia S, Marchese L. Porous aluminophosphates: from molecular sieves to designed acids catalysts. Annu Rev Mater Res, 2005, 35: 351–395

    Article  CAS  Google Scholar 

  4. Yu JH, Xu RR. Rich structure chemistry in the aluminophosphate family. Acc Chem Res, 2003, 36: 481–490

    Article  CAS  Google Scholar 

  5. Bandyopadhyay M, Bandyopadhyay R, Tawada S, Kubota Y, Sugi Y. Catalytic performance of silicoaluminophosphate (SAPO) molecular sieves in the isopropylation of biphenyl. Appl Catal A: Gen, 2002, 225: 51–62

    Article  CAS  Google Scholar 

  6. Venkatathri N. Synthesis and characterization of high silica content silicoaluminophosphate SAPO-35 from non-aqueous medium. Catal Commun, 2006, 7: 773–777

    Article  CAS  Google Scholar 

  7. Gómez-Hortigüela L, Márquez-álvarez C, Grande-Casas M, García R, Pérez-Pariente J. Tailoring the acid strength of microporous silicoaluminophosphates through the use of mixtures of templates: control of the silicon incorporation mechanism. Micropor Mesopor Mater, 2009, 121: 129–137

    Article  Google Scholar 

  8. Hochtl M, Jentys A, Vinek H. Isomerization of 1-pentene over SAPO, CoAPO (AEL, AFI) molecular sieves and HZSM-5. Appl Catal A: Gen, 2001, 207: 397–405

    Article  CAS  Google Scholar 

  9. Zhu QJ, Hinode M, Yokoi T, Yoshioka M, Kondo JN, Tatsumi T. Synthesis, characterization and catalytic studies of CHA zeotype materials containing boron and iron. Catal Commun, 2009, 10: 447–450

    Article  CAS  Google Scholar 

  10. Liu P, Ren J, Sun YH. Synthesis, characterization and catalytic properties of SAPO-11 with high silicon dispersion. Catal Commun, 2008, 9: 1804–1809

    Article  CAS  Google Scholar 

  11. Trukhan NN, Romannikov VN, Paukshtis EA, Shmakov AN, Kholdeeva OA. Oxidation of 2,3,6-trimethylphenol over Ti- and V-containing mesoporous mesophase catalysts: Structure-activity/selectivity correlation. J Catal, 2001, 202: 110–117

    Article  CAS  Google Scholar 

  12. Khenkin AM, Neumann R. Aerobic photochemical oxidation in mesoporous Ti-MCM-41: Epoxidation of alkenes and oxidation of sulfides. Catal Lett, 2000, 68: 109–111

    Article  CAS  Google Scholar 

  13. Parvulescu V, Anastasescu C, Constantin C, Su BL. Mono (V, Nb) or bimetallic (V-Ti, Nb-Ti) ions modified MCM-41 catalysts: Synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols). Catal Today, 2003, 78: 477–485

    Article  CAS  Google Scholar 

  14. Lang N, Delichere P, Tuel A. Post-synthesis introduction of transition metals in surfactant-containing MCM-41 materials. Micropor Mesopor Mater, 2002, 56: 203–217

    Article  CAS  Google Scholar 

  15. Corma A, Martinez A, Martinez-Soria V, Monton JB. Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst. J Catal, 1995, 153: 25–31

    Article  CAS  Google Scholar 

  16. Chen CY, Li HX, Davis ME. Studies on mesoporous materials: I. synthesis and characterization of MCM-41. Micropor Mater, 1993, 2: 17–26

    Article  Google Scholar 

  17. Kim JM, Kwak JH, Jun S, Ryoo R. Ion exchange and thermal stability of MCM-41. J Phys Chem, 1995, 99: 16742–16747

    Article  CAS  Google Scholar 

  18. Xiao FS, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. J Am Chem Soc, 2002, 124: 888–889

    Article  CAS  Google Scholar 

  19. Zhao DY, Luan ZH, Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves. Chem Commun, 1997, 1009–1010

  20. Feng PY, Bu XH, Stucky GD. Control of structural ordering in crystalline lamellar aluminophosphates with periodicity from 51 to 62 Å. Inorg Chem, 2000, 39: 2–3

    Article  CAS  Google Scholar 

  21. Khimyak YZ, Klinowski J. Incorporation of magnesium in mesostructured and mesoporous aluminophosphates. Phys Chem Chem Phys, 2001, 3: 1544–1551

    Article  CAS  Google Scholar 

  22. Vo V, Nguyen PH. Synthesis and characterization of thermally stable mesoporous SAPO. Tap Chi Hoa Hoc, 2006, 44: 490–494

    CAS  Google Scholar 

  23. Chakraborty B, Pulikottil AC, Das S, Viswanathan B. Synthesis and characterization of mesoporous SAPO. Chem Commun, 1997, 911–912

  24. Zhao XS, Lu GQ, Whittaker AK, Drennan J, Xu H. Influence of synthesis parameters on the formation of mesoporous SAPOs. Micropor Mesopor Mater, 2002, 55: 51–62

    Article  CAS  Google Scholar 

  25. Kresge CT, Leonowicz ME, Vartuli WC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    Article  CAS  Google Scholar 

  26. Sayari A, Moudrakovski IL, Reddy JS, Ratcliffe CI, Ripmeester JA, Preston FK. Synthesis of mesostructured lamellar aluminophosphates using supramolecular templates. Chem Mater, 1996, 8: 2080–2088

    Article  CAS  Google Scholar 

  27. Yang WS, Zhang BQ, Liu XF. Synthesis and characterization of SAPO-5 membranes on porous α-Al2O3 substrates. Micropor Mesopor Mater, 2009, 117: 391–394

    Article  CAS  Google Scholar 

  28. Wang LF, Zhu GS, Qiu SL. Synthesis of zeolite silicalite-1 with chain-like morphology (in Chinese). Chem J Chin Univer, 2008, 29: 1099–1101

    Google Scholar 

  29. Xu RR, Pang WQ, Yu JH, Huo QS, Chen JS. Chemistry-Zeolites and Porous Materials (in Chinese). Beijing: Science Press, 2004. 146–212

    Google Scholar 

  30. Al-Khattaf S, de Lasa H. The role of diffusion in alkyl-benzenes catalytic cracking. Appl Catal A: Gen, 2002, 226: 139–153

    Article  CAS  Google Scholar 

  31. Zhu L, Xiao FS, Zhang ZT, Sun YY, Han Y, Qiu SL. High activity in catalytic cracking over stable mesoporous aluminosilicates. Catal Today, 2001, 68: 209–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianBo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Zhao, T., Xu, X. et al. High activity in catalytic cracking of large molecules over micro-mesoporous silicoaluminophosphate with controlled morphology. Sci. China Chem. 53, 2279–2284 (2010). https://doi.org/10.1007/s11426-010-4102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4102-0

Keywords

Navigation