Skip to main content
Log in

Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Underpotential deposition (UPD) of Cu on an Au electrode followed by redox replacement reaction (RRR) of CuUPD with a Pt source (H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers (for short, Pt(CuUPD-Pt4+)n/Au for H2PtCl6, or Pt(CuUPD-Pt2+)n/Au for K2PtCl4, where n denotes the number of UPD-redox replacement cycles). The electrochemical quartz crystal microbalance (EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity (SECA) for methanol oxidation in alkaline solution. In comparison with Pt(CuUPD-Pt2+)n/Au, Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity, and the maximum SECA was obtained to be as high as 35.7 mA μg−1 at Pt(CuUPD-Pt4+)3/Au. The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency, and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuO x -reduction peaks. The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers, and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological, energy and environmental sciences and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsin YL, Hwang KC, Yeh CT. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol. J Am Chem Soc, 2007, 129: 9999–10010

    Article  CAS  Google Scholar 

  2. Ye F, Li J, Wang T, Liu Y, Wei H, Li J, Wang X. Electrocatalytic properties of platinum catalysts prepared by pulse electrodeposition method using SnO2 as an assisting reagent. J Phys Chem C, 2008, 112: 12894–12898

    Article  CAS  Google Scholar 

  3. Wen Z, Wang Q, Li J. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalyst. Adv Funct Mater, 2008, 9999: 1–6

    Google Scholar 

  4. Hammer B. Morikawa Y, Norskov JK. Effect of strain on the reactivity of metal surfaces. Phys ReV Lett, 1996, 76: 2141–2144

    Article  CAS  Google Scholar 

  5. Kitchin JR, Nørskov JK, Barteau MA, Chen JG. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3 d transition metals. J Chem Phys, 2004, 120: 10240–10245

    Article  CAS  Google Scholar 

  6. Yang L, Yang W, Cai Q. Well-dispersed PtAu nanoparticles loaded into anodic titania nanotubes: a high antipoison and stable catalyst system for methanol oxidation in alkaline media. J Phys Chem C, 2007, 111: 16613–16617

    Article  CAS  Google Scholar 

  7. Guo X, Guo DJ, Qiu XP, Chen LQ, Zhu WT. A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochem Commun, 2008, 10: 1748–1751

    Article  CAS  Google Scholar 

  8. Hernández-Fernández P, Rojas S, Ocón P, Fuente JLGd l, Fabián JS, Sanza J, Peña MA, García-García FJ, Terreros P. Fierro JLG. Influence of the preparation route of bimetallic Pt-Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C, 2007, 111: 2913–2923

    Article  Google Scholar 

  9. Kim J, Jung C, Rhee CK, Lim Th. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir, 2007, 23: 10831–10836

    Article  CAS  Google Scholar 

  10. Tang H, Chen JH, Wang MY, Nie LH, Kuang YF, Yao SZ. Controlled synthesis of platinum catalysts on Au nanoparticles and their electrocatalytic property for methanol oxidation. Appl Catal A, 2004, 275: 43–48

    Article  CAS  Google Scholar 

  11. Liu P, Ge X, Wang R, Ma H, Ding Y. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir, 2009, 25: 561–567

    Article  Google Scholar 

  12. Yu Y, Hu Y, Liu X, Deng W, Wang X. The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement. Electrochim Acta, 2009, 54: 3092–3097

    Article  CAS  Google Scholar 

  13. Shin TY, Yoo SH, Park S. Gold nanotubes with a nanoporous wall: their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation. Chem Mater, 2008, 20: 5682–5686

    Article  CAS  Google Scholar 

  14. Ge X, Wang R, Liu P, Ding Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem Mater, 2007, 19: 5827–5829

    Article  CAS  Google Scholar 

  15. Zhao G., He J, Zhang C, Zhou J, Chen X, Wang T. Highly dispersed Pt nanoparticles on mesoporous carbon nanofibers prepared by two templates. J Phys Chem C, 2008, 112: 1028–1033

    Article  CAS  Google Scholar 

  16. Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y. Kinetic measurements of DNA hybridization on an oligonucleotideimmobilized 27-MHz quartz crystal microbalance. Anal Chem, 1998, 70: 1288–1296

    Article  CAS  Google Scholar 

  17. Su YH, Xie QJ, Chen C, Zhang QF, Ma M, Yao SZ. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Biotechnol Prog, 2008, 24: 262–272

    Article  CAS  Google Scholar 

  18. Sauerbrey S. Verwendung von schwingquarzen zur wägung dúnner Schichten and zur mikrowägung. Z Phys, 1959, 155: 206–222

    Article  CAS  Google Scholar 

  19. Tu XM, Xie QJ, Xiang CH, Zhang YY, Yao SZ. Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films. J Phys Chem B, 2005, 109: 4053–4063

    Article  CAS  Google Scholar 

  20. Huang JH, Xie QJ, Tan YM, Fu YC, Su ZH, Huang Y, Yao SZ. Preparation of Pt/multiwalled carbon nanotubes modified Au electrodes via Pt-Cu co-electrodeposition/Cu stripping protocol for highperformance electrocatalytic oxidation of methanol. Mater Chem Phys, 2009, 118: 371–378

    Article  CAS  Google Scholar 

  21. Park S, Yang PX, Corredor P, Weaver MJ. Transition metal-coated nanoparticle films: Vibrational characterization with surface-enhanced Raman scattering. J Am Chem Soc, 2002, 124: 2428–2429

    Article  CAS  Google Scholar 

  22. Brankovic SR, Wang JX, Adzic RR. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci, 2001, 474: L173–L179

    Article  CAS  Google Scholar 

  23. Mrozek MF, Xi Y, Weaver MJ. Surface-enhanced Raman scattering on uniform platinum-group overlayers: Preparation by redox replacement of underpotential-deposited metals on gold. Anal Chem, 2001, 73: 5953–5960

    Article  CAS  Google Scholar 

  24. Tia N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electrooxidation activity. Science, 2007, 316: 732–735

    Article  Google Scholar 

  25. Kim YG, Kim JY, Vairavapandian D, Stickney JL. Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in-situ scanning tunneling microscopy. J Phys Chem B, 2006, 110: 17998–18006

    Article  CAS  Google Scholar 

  26. Shimazu K, Kawaguchi T, Isomura T. Construction of mixed mercaptopropionic acid/alkanethiol monolayers of controlled composition by structural control of a gold substrate with underpotentially deposited lead atoms. J Am Chem Soc, 2002, 124: 652–661

    Article  CAS  Google Scholar 

  27. Yoo SH, Park S. Electrocatalytic applications of a vertical Au nanorod array using ultrathin Pt/Ru/Pt layer-by-layer coatings. Electrochim Acta, 2008, 53: 3656–3662

    Article  CAS  Google Scholar 

  28. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J. Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources, 2007, 165: 65–72

    Article  CAS  Google Scholar 

  29. Spendelow JS, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys, 2007, 9: 2654–2675

    Article  CAS  Google Scholar 

  30. Luo J, Njoki PN, Lin Y, Mott D, Wang L, Zhong CJ. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir, 2006, 22: 2892–2898

    Article  CAS  Google Scholar 

  31. Mott D, Luo J, Njoki PN, Lin Y, Wang L, Zhong CJ. Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal Today, 2007, 122: 378–385

    Article  CAS  Google Scholar 

  32. Nagashree KL, Ahmed MF. Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium. Synth Met, 2008, 158: 610–616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QingJi Xie or ShouZhuo Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Jia, X., Xie, Q. et al. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution. Sci. China Chem. 53, 2349–2356 (2010). https://doi.org/10.1007/s11426-010-4078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4078-9

Keywords

Navigation