Science China Chemistry

, Volume 53, Issue 9, pp 1978–1981 | Cite as

Synthesis and characterization of stable osmafuran starting from HC≡CCH(OH)C≡CH and OsHCl(CO)(PPh3)3

  • Hong ZhangEmail author
  • Ran Lin
  • Ming Luo
  • HaiPing XiaEmail author


This paper presents a new convenient route to prepare osmafuran starting from readily accessible HC≡CCH(OH)C≡CH and OsHCl(CO)(PPh3)3. Treatment of a solution of OsHCl(CO)(PPh3)3 in dichloromethane with HC≡CCH(OH)C≡CH, followed by the addition of acetic acid, produced osmafuran [Os(CHC(PPh3)CO(CH2CH3))Cl(CO)(PPh3)2]Cl (2). 2 has been isolated in good yield and fully characterized. 1H and 13C NMR spectra show the characteristic downfield chemical shifts of the ring hydrogen and carbon atoms. NMR and X-ray diffraction data provide strong evidence for the aromatic nature of 2. Probably due to the effect of the phosphonium substituent, 2 exhibits remarkable thermal stability, air stability and lower reactivity.


osmafuran metallaaromatics phosphonium salt synthesis stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel EW, Stone FGA, Wilkinson G. In: Comprehensive Organometallic Chemistry. II, Vol. 12. New York: Pergamon, 1995. Chapter 1–12Google Scholar
  2. 2.
    Recent examples of three-membered metallacycles: (a) Kazi AB, Dias HVR, Tekarli SM, Morello GR, Cundari TR. Coinage metalethylene complexes supported by tris(pyrazolyl)borates: A computational study. Organometallics, 2009, 28: 1826–1831CrossRefGoogle Scholar
  3. 2 (b).
    Zhang W, Yamada J, Nomura K. Reactions of an (arylimido)vanadium(V)-alkylidene, V(CHSiMe3)(N-2,6-Me2C6H3)(N=CtBu2)(PMe3), with nitriles, diphenylacetylene, and styrene. Organometallics, 2008, 27: 5353–5360CrossRefGoogle Scholar
  4. 2 (c).
    Hsiao J, Su M-D. Theoretical characterizations of the ring expansion of a metallacyclopropane to a metallacyclopentane. Organometallics, 2008, 27: 4139–4146CrossRefGoogle Scholar
  5. 2 (d).
    Karunatilaka C, Tackett BS, Washington J, Kukolich SG. Structure of tetracarbonylethyle-neosmium: Ethylene structure changes upon complex formation. J Am Chem Soc, 2007, 129: 10522–10530CrossRefGoogle Scholar
  6. 3.
    Recent examples of four-membered metallacycles: (a) Casey CP, Boller TM, Samec JSM, Reinert-Nash JR. Quantitative determination of the regioselectivity of nucleophilic addition to η 3-propargyl rhenium complexes and direct observation of an equilibrium between η 3-propargyl rhenium complexes and rhenacyclobutenes. Organometallics, 2009, 28: 123–131CrossRefGoogle Scholar
  7. 3 (b).
    Holland RL, O’Connor JM. Nitroso compounds serve as precursors to late-metal η2(N,O)-hydroxylamido complexes. Organometallics, 2009, 28: 394–396CrossRefGoogle Scholar
  8. 3 (c).
    Holland RL, Bunker KD, Chen CH, DiPasquale, AG, Rheingold AL, Baldridge KK, O’Connor JM. Reactions of a metallacyclobutene complex with alkenes. J Am Chem Soc, 2008, 130: 10093–10095CrossRefGoogle Scholar
  9. 3 (d).
    Dabb SL, Messerle BA, Wagler J. Formation of metallacyclobutene complexes via the addition of hydrazines to ruthenium vinylidene complexes. Organometallics, 2008, 27: 4657–4665CrossRefGoogle Scholar
  10. 4.
    Recent examples of five-membered metallacycles: (a) Xi C, Yan X, You W, Takahashi T. Coupling reactions of zirconate complexes induced by carbonyl compounds. Angew Chem Int Ed, 2009, 48: 8120–8123CrossRefGoogle Scholar
  11. 4 (b).
    Zhang W-X, Zhang S, Sun X, Nishiura M, Hou Z, Xi Z. Zirconium- and silicon-containing intermediates with three fused rings in a zirconocene-mediated intermolecular coupling reaction. Angew Chem Int Ed, 2009, 48: 7227–7231CrossRefGoogle Scholar
  12. 4 (c).
    Fu X, Chen J, Li G, Liu Y. Diverse reactivity of zirconacyclocumulenes derived from coupling of benzynezirconocenes with 1,3-butadiynes towards acyl cyanides: Synthesis of indeno[2,1-b]pyrroles or [3]cumulenones. Angew Chem Int Ed, 2009, 48: 5500–5504CrossRefGoogle Scholar
  13. 4 (d).
    Paneque M, Poveda ML, Rendón N, Mereiter K. Reaction of the iridacyclopentadiene TpMe2Ir(C(R)=C(R)C(R)=C(R))(H2O) (R=CO2Me) with alkynes. Organometallics, 2009, 28: 172–180CrossRefGoogle Scholar
  14. 4 (e).
    Zhang S, Sun X, Zhang W-X, Xi Z. One-pot multicomponent synthesis of azaindoles and pyrroles from one molecule of a silicon-tethered diyne and three or two molecules of organonitriles mediated by zirconocene. Chem Eur J, 2009, 15, 12608–12617CrossRefGoogle Scholar
  15. 4 (f).
    Wang C, Deng L, Yan J, Wang H, Luo Q, Zhang W-X, Xi Z. Zirconocene-mediated ligand-switched selective cleavage of active and inert carbon-carbon bonds in allylcyclopropanes. Chem Commun, 2009, 4414–4416Google Scholar
  16. 4 (g).
    Yan X, Lai C, Xi C. Zr-promoted linear coupling of alkynes to generate bis(allene)s. Chem Commun, 2009, 6026–6028Google Scholar
  17. 4 (h).
    Zhou Y, Chen J, Zhao C, Wang E, Liu Y, Li Y. Stereoselective synthesis of β-hydroxyallenes with multiple contiguous stereogenic centers via aldehyde addition to α-alkenyl-substituted zirconacyclopentenes. J Org Chem, 2009, 74: 5326–5330CrossRefGoogle Scholar
  18. 4 (i).
    Buccella D, Janak KE, Parkin G. Reactivity of Mo(PMe3)6 towards benzothiophene and selenophenes: New pathways relevant to hydrodesulfurization. J Am Chem Soc, 2008, 130: 16187–16189CrossRefGoogle Scholar
  19. 5.
    Recent examples of six-membered metallacycles: (a) Mizuhata Y, Sasamori T, Takeda N, Tokitoh N. A stable neutral stannaaromatic compound: Synthesis, structure and complexation of a kinetically stabilized 2-stannanaphthalene. J Am Chem Soc, 2006, 128: 1050–1051CrossRefGoogle Scholar
  20. 5 (b).
    Tokitoh N, Nakata N, Shinohara A, Takeda N, Sasamori T. Coordination chemistry of a kinetically stabilized germabenzene: syntheses and properties of stable η 6-germabenzene complexes coordinated to transition metals. Chem Eur J, 2007, 13: 1856–1862CrossRefGoogle Scholar
  21. 5 (c).
    Wang Q, Fan H, Fang H, Xi Z. 1-Zircona-2-cyclohexenes: Novel synthesis and preliminary reactions. Organometallics, 2007, 26: 775–777CrossRefGoogle Scholar
  22. 5 (d).
    Yu T, Sun X, Wang C, Deng L, Xi Z. Zirconocene-mediated intermolecular coupling of Si-tethered diynes with alkynes, ketones, aldehydes, and isocyanates by means of novel skeletal rearrangement of zirconacyclobutene-silacyclobutene and zirconacyclohexadiene-silacyclobutene fused-ring intermediates. Chem Eur J, 2005, 11: 1895–1902CrossRefGoogle Scholar
  23. 5 (e).
    Hughes RP, Trujillo HA, Egan JW Jr, Rheingold AL. Iridium-promoted reactions of carbon-carbon bonds. Skeletal rearrangement of a vinylcyclopropene during iridacyclohexadiene formation and subsequent isomerization of iridacyclohexadienes via α,α′-substituent migrations. J Am Chem Soc, 2000, 122: 2261–2271CrossRefGoogle Scholar
  24. 6.
    For recent reviews of metallaaromatics, see: (a) Bleeke JR. Aromatic iridacycles. Acc Chem Res, 2007, 40: 1035–1047CrossRefGoogle Scholar
  25. 6 (b).
    Jia G. Recent progress in the chemistry of osmium carbyne and metallabenzyne complexes. Coord Chem Rev, 2007, 251: 2167–2187CrossRefGoogle Scholar
  26. 6 (c).
    Wright LJ. Metallabenzenes and metallabenzenoids. Dalton Trans, 2006, 1821–1827Google Scholar
  27. 6 (d).
    Landorf CW, Haley, MM. Recent advances in metallabenzene chemistry. Angew Chem Int Ed, 2006, 45: 3914–3936CrossRefGoogle Scholar
  28. 6 (e).
    Jia G. Progress in the chemistry of metallabenzynes. Acc Chem Res, 2004, 37: 479–486CrossRefGoogle Scholar
  29. 6 (f).
    Bleeke JR. Metallabenzenes. Chem Rev, 2001, 101: 1205–1227CrossRefGoogle Scholar
  30. 7.
    Bleeke JR, New PR, Blanchard JMB, Haile T, Beatty AM. Synthesis of a new family of metallafurans from (oxapentadienyl)metal precursors. Organometallics, 1995, 14: 5127–5137, and Ref. [6] thereinCrossRefGoogle Scholar
  31. 8.
    Bierstedt A, Clark GR, Roper WR, Wright LJ. A 2-iridafuran from reaction between a 1-iridaindene and methyl propiolate. J Organomet Chem, 2006, 691: 3846–3852CrossRefGoogle Scholar
  32. 9 (a).
    Gong L, Lin Y, Wen TB, Zhang H, Zeng B, Xia H. Formation of four conjugated osmacyclic species in a one-pot reaction. Organometallics, 2008, 27: 2584–2589CrossRefGoogle Scholar
  33. 9 (b).
    Gong L, Lin Y, Wen TB, Xia H. Synthesis of coordinated η 2-α,β-unsaturated ketone osmacycles from an osmium-coordinated alkyne alcohol complex. Organometallics, 2009, 28: 1101–1111CrossRefGoogle Scholar
  34. 9 (c).
    Lin Y, Gong L, Xu H, He X, Wen TB, Xia H. Nine-membered osmacycles derived from metathesis reactions between alkynes and an osmafuran. Organometallics, 2009, 28: 1524–1533CrossRefGoogle Scholar
  35. 9 (d).
    He, XM, Liu Q, Gong L, Lin Y, Wen TB. Synthesis of an osmafuran from photochemical hydrolysis of OsCl2(CH= C(PPh3)C(O)-η2-CH=CH2)(PPh3)2. Inorg Chem Commun, 2010, 13: 342–345CrossRefGoogle Scholar
  36. 10.
    Goeden GV, Haymore BL. Formation of osmium nitrile complexes and phosphinimine complexes from N-aroylphosphinimines. Inorg Chim Acta, 1983, 71: 239–249CrossRefGoogle Scholar
  37. 11.
    Jones ERH, Lee HH, Whiting MC. Researches on acetylenic compounds. Part LXIV. The preparation of conjugated octa- and deca- acetylenic compounds. J Chem Soc, 1960, 3483–3489Google Scholar
  38. 12 (a).
    Esteruelas MA, Lahoz FJ, Oñate E, Oro LA, Zeier B. Reactions of OsHCl(CO)(PiPr3)2 with alkyn-1-ols: Synthesis of (vinylcarbene) osmium (II) complexes. Organometallics, 1994, 13: 1662–1668CrossRefGoogle Scholar
  39. 12 (b).
    Eguillor B, Esteruelas M A, Oliván M, Oñate E. C(sp2)-H activation of RCH=E-py (E=CH, N) and RCH=CHC(O)R’ substrates promoted by a highly unsaturated osmium-monohydride complex. Organometallics, 2005, 24: 1428–1438CrossRefGoogle Scholar
  40. 13.
    See for examples: (a) Xia H, Wen TB, Hu QY, Wang X, Chen X, Shek LY, Williams ID, Wong KS, Wong GKL, Jia G. Synthesis and characterization of trimetallic ruthenium and bimetallic osmium complexes with metal-vinyl linkages. Organometallics, 2005, 24: 562–569CrossRefGoogle Scholar
  41. 13 (b).
    Harlow KJ, Hill AF, Welton T. Control of intramolecular acetate-allenylidene coupling by spectator co-ligand and π-acidity. J Chem Soc Dalton Trans, 1999, 1911–1912Google Scholar
  42. 14 (a).
    Zhang H, Wu L, Lin R, Zhao Q, He G, Yang F, Wen TB, Xia H. Synthesis, characterization and electrochemical properties of stable osmabenzenes containing PPh3 substituents. Chem Eur J, 2009, 15: 3546–3559CrossRefGoogle Scholar
  43. 14 (b).
    Zhang H, Feng L, Gong L, Wu L, He G, Wen T, Yang F, Xia H. Synthesis and characterization of stable ruthenabenzenes starting from HC ≡ CCH(OH)C ≡ CH. Organometallics, 2007, 26: 2705–2713CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces; College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations