Skip to main content
Log in

Mechanism study and molecular design in controlled/“living” radical polymerization

  • Reviews
  • Special Topic Advances in Principles of Polymerization
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This tutorial review summarizes recent progress in the research field of controlled/“living” radical polymerization (CLRP) from Soochow University. The present paper gives a broad overview of the mechanism study and molecular design in CLRP. The mechanism study in CLRP aided by microwave, initiated by γ-radiation at low temperature, mediated by iron, in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized. The molecular design in CLRP, especially in RAFT polymerization for mechanism study, and in achieving tailor-made functional polymers is studied and discussed in the later part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otsu T, Yoshida M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol Rapid Commun, 1982, 3: 127–132

    Article  CAS  Google Scholar 

  2. Otsu T, Yoshida M, Tazaki T. A model for living radical polymerization. Macromol Rapid Commun, 1982, 3: 133–140

    Article  CAS  Google Scholar 

  3. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26: 2987–2988

    Article  CAS  Google Scholar 

  4. Wang JS, Matyjaszewski K. Controlled /“living” radical polymerization: Atom transfer radical pdymerization in the presence of transition metal complex. J Am Chem Soc, 1995, 117: 5614–5615

    Article  CAS  Google Scholar 

  5. Kate M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(ll)/methylaluminum bis(2,6-di-tertbutylphenozide) initiating system: Possibility of living radical polymerization. Macromolecules, 1995, 28: 1721–1723

    Article  Google Scholar 

  6. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31: 5559–5562

    Article  CAS  Google Scholar 

  7. Wang JS, Matyjaszewski K. “Living”/controlled radical polymerization transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules, 1995, 28: 7572–7573

    Article  CAS  Google Scholar 

  8. Percec V, Guliashvili T, Ladislaw JS, Wistrand A, Stjerndahl A, Sienkowska MJ, Monteiro MJ, Sahoo S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J Am Chem Soc, 2006, 128: 14156–14165

    Article  CAS  Google Scholar 

  9. Min K, Gao HF, Matyjaszewski K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J Am Chem Soc, 2005, 127: 3825–3830

    Article  CAS  Google Scholar 

  10. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921–2990

    Article  CAS  Google Scholar 

  11. Kamigaito M, Ando T, Sawamoto T. Metal-catalyzed living radical polymerization. Chem Rev, 2001, 101: 3689–3745

    Article  CAS  Google Scholar 

  12. Matyjaszewski K, Tsarevsky NV. “Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007, 107: 2270–2299

    Article  CAS  Google Scholar 

  13. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process: A first update. Aust J Chem, 2006, 59: 669–692

    Article  CAS  Google Scholar 

  14. Moad G, Rizzardo E, Thang SH. Radical addition-fragmentation chemistry in polymer synthesis. Polymer, 2008, 49: 1079–1131

    Article  CAS  Google Scholar 

  15. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process — A second update. Aust J Chem, 2009, 62: 1402–1472

    Article  CAS  Google Scholar 

  16. Sciannamea V, Jerome R, Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: Their understanding and optimization. Chem Rev, 2008, 108: 1104–1126

    Article  CAS  Google Scholar 

  17. Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev, 2001, 101: 3661–3688

    Article  CAS  Google Scholar 

  18. Zhu XL, Zhou NC, He XM, Cheng ZP, Lu JM. The atom transfer radical bulk polymerization of methyl methacrylate under microwave irradiation. J Appl Polym Sci, 2003, 88: 1787–1793

    Article  CAS  Google Scholar 

  19. Berlan J, Giboreau P, Lefeuvre S, Marchand C. Synthese organique sous champ microondes: Premier exemple d’activation specifique en phase homogene. Tetrahedron Lett, 1991, 32: 2363–2366

    Article  CAS  Google Scholar 

  20. Sasa Z, Andrej S, Time K. Kinetics of catalytic transfer hydrogenation of soybean oil in microwave and thermal field. J Org Chem, 1994, 59: 7433–7436

    Article  Google Scholar 

  21. Mijovic J, Fishbain A, Wijaya J. Mechanistic modeling of epoxyamine kinetics. 2. Comparison of kinetics in thermal and microwave field. Macromolecules, 1992, 25: 986–989

    Article  CAS  Google Scholar 

  22. Caddick S. Microwave assisted organic reactions. Tetrahedron, 1995, 51: 10403–10432

    Article  CAS  Google Scholar 

  23. Chia HL, Jacob J, Boey FYC. The microwave radiation effect on the polymerization of styrene. J Polym Sci Part A: Polym Chem, 1996, 34: 2087–2094

    Article  CAS  Google Scholar 

  24. Palacios J, Valverde C. Microwave initiated emulsion polymerization of styrene: Reaction conditions. New Polym Mater, 1996, 5: 93–102

    CAS  Google Scholar 

  25. Correa R, Gonzalez G, Dougar V. Emulsion polymerization in a microwave reactor. Polymer, 1998, 39: 1471–1474

    Article  CAS  Google Scholar 

  26. Mallon FK, Ray WH. Enhancement of solid-state polymerization with microwave energy. J Appl Polym Sci, 1998, 69: 1203–1212

    Article  CAS  Google Scholar 

  27. Cheng ZP, Zhu XL, Chen GJ, Xu WJ, Lu JM. Reverse atom transfer radical solution polymerization of methyl methacrylate under pulsed microwave irradiation. J Polym Sci Part A: Polym Chem, 2002, 40: 3823–3834

    Article  CAS  Google Scholar 

  28. Xu WJ, Zhu XL, Cheng ZP, Chen GJ, Lu JM. Atom transfer radical polymerization of n-octyl acrylate under microwave irradiation. Eur Polym J, 2003, 39: 1349–1353

    Article  CAS  Google Scholar 

  29. Cheng ZP, Zhu XL, Chen M, Chen JY, Zhang LF. Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation. Polymer, 2003, 44: 2243–2247

    Article  CAS  Google Scholar 

  30. Wang G, Zhu XL, Cheng ZP, Zhou NC, Lu JM. Atom transfer radical polymerization of methyl methacrylate under microwave irradiation. Polym. J, 2003, 35: 399–401

    Article  CAS  Google Scholar 

  31. Chen GJ, Zhu XL, Cheng, ZP, Lu JM, Chen JY. Controlled/“living” radical polymerization of methyl methacrylate with p-TsCl/CuBr/BPY initiating system under microwave irradiation. Polym Int, 2004, 53: 357–363

    Article  CAS  Google Scholar 

  32. Li X, Zhu XL, Cheng ZP, Xu WJ, Chen GJ. Atom-transfer radical polymerization of methyl methacrylate with α,α′-dichloroxylene/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine initiation system under microwave irradiation. J Appl Polym Sci, 2004, 92: 2189–2195

    Article  CAS  Google Scholar 

  33. Cheng ZP, Zhu XL, Zhang LF, Zhou NC, Xue XR. RATRP of MMA in AIBN/FeCl3/PPh3 initiation system under microwave irradiation. Polym Bull, 2003, 49: 363–369

    Article  CAS  Google Scholar 

  34. Chen GJ, Zhu XL, Cheng ZP, Xu WJ, Lu JM. Controlled/”living” radical polymerization of methyl methacrylate using AIBN as the initiator under microwave irradiation. Radi Phys Chem, 2004, 69: 129–135

    Article  CAS  Google Scholar 

  35. Li JA, Zhu XL, Zhu J, Cheng ZP. Microwave assisted nitroxidemediated living free radical polymerization of styrene. Radi Phys Chem, 2006, 75: 253–258

    Article  CAS  Google Scholar 

  36. Zhu J, Zhu XL, Zhang ZB, Cheng ZP. Reversible additional fragmentation chain transfer polymerization of styrene under microwave irradiation. J Polym Sci Part A: Polym Chem, 2006, 44: 6810–6816

    Article  CAS  Google Scholar 

  37. Cheng ZP, Zhu XL, Chen JY, Lu JM. Homogeneous solution reverse atom transfer radical polymerization of methyl methacrylate. J Macromol Sci Part A: Pure Appl Chem, 2003, A40: 1157–1171

    CAS  Google Scholar 

  38. Cheng ZP, Zhu XL, Zhou NC, Zhu J, Zhang ZB. Solution ATRP of styrene under pulsed microwave irradiation. Rad Phys Chem, 2005, 72: 695–701

    Article  CAS  Google Scholar 

  39. Pande CS, Gupta N. Gamma-radiation-induced graft copolymerization of acrylamide onto crosslinked poly (N-vinylpyrrolidone). J Appl Polym Sci, 1999, 71: 2163–2168

    Article  CAS  Google Scholar 

  40. Bai RK, Pan CY, You YZ. 60Co γ-irradiation-initiated “living” free-radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Rapid Commun, 2001, 22: 315–319

    Article  CAS  Google Scholar 

  41. Hong CY, You YZ, Bai RK, Pan CY, Borjihan G. Controlled polymerization of acrylic acid under 60Co irradiation in the presence of dibenzyl trithiocarbonate. J Polym Sci Part A: Polym Chem, 2001, 39: 3934–3939

    Article  CAS  Google Scholar 

  42. Quinn JF, Barner L, Davis TP, Thang SH, Rizzardo E. Living free radical polymerisation under a constant source of gamma radiation — An example of reversible addition-fragmentation chain transfer or reversible termination? Macroml Rapid Commun, 2002, 23: 717–721

    Article  CAS  Google Scholar 

  43. Quinn JF, Barner L, Rizzardo E, Davis TP. Facile synthesis of comb, star, and graft polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. J Polym Sci Part A: Polym Chem, 2002, 40: 19–25

    Article  CAS  Google Scholar 

  44. Hua DB, Cheng K, Bai W, Bai RK, Lu WQ, Pan CY. A strategy for developing novel structural polyurethanes and functional materials. Controlled/living free-radical polymerization of acryloyl azide under 60Co γ-ray irradiation. Macromolecules, 2005, 38: 3051–3053

    Article  CAS  Google Scholar 

  45. Zhou Y, Zhu J, Zhu XL, Cheng ZP. Controlled/living radical polymerization of methyl methacrylate using gamma radiation as an initiation source. Rad. Phys Chem, 2006, 75: 485–492

    Article  CAS  Google Scholar 

  46. Zhou Y, Zhu XL, Cheng ZP, Zhu J. “Living”/controlled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. J Appl Polym Sci, 2007, 103: 1769–1775

    Article  CAS  Google Scholar 

  47. Hua DB, Ge XP, Tang J, Zhu XL, Bai RK. Controlled free-radical polymerization of methyl acrylate in the presence of a cyclic trithiocarbonate under γ-ray irradiation at low temperature. Eur Polym J, 2007, 43: 847–854

    Article  CAS  Google Scholar 

  48. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tertbutylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28: 1721–1723

    Article  CAS  Google Scholar 

  49. Ando T, Kamigaito M, Sawamoto M. Iron(II) chloride complex for living radical polymerization of methyl methacrylate. Macromolecules, 1997, 30: 4507–4510

    Article  CAS  Google Scholar 

  50. Moineau G, Dubois P, Jerome R, Senninger T, Teyssie P. Alternative atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: An easy way to well-controlled PMMA. Macromolecules, 1998, 31, 545–547

    Article  CAS  Google Scholar 

  51. Grognec EL, Claverie J, Poli R. Radical polymerization of styrene controlled by half-sandwich Mo(III)/Mo(IV) couples: All basic mechanisms are possible. J Am Chem Soc, 2001, 123: 9513–9524

    Article  CAS  Google Scholar 

  52. Wang B, Zhuang Y, Luo X, Xu S, Zhou X. Controlled/“living” radical polymerization of MMA catalyzed by cobaltocene. Macromolecules, 2003, 36: 9684–9686

    Article  CAS  Google Scholar 

  53. Wang G, Zhu XL, Zhu J, Cheng ZP. New ligands for Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J Polym Sci Part A: Polym Chem, 2006, 44: 483–489

    Article  CAS  Google Scholar 

  54. Wang G, Zhu XL, Cheng ZP, Zhu J. Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. Eur Polym J, 2003, 39: 2161–2165

    Article  CAS  Google Scholar 

  55. Wang G, Zhu XL, Cheng ZP, Zhu J. New ligands for Fe (III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J Polym Sci Part A: Polym. Chem, 2006, 44: 2912–2921

    Article  CAS  Google Scholar 

  56. Zhang LF, Cheng ZP, Lu YT, Zhu XL. FeCl3/tris(3,6-dioxaheptyl) amine/1,3,5-(2-bromo-2-methylpropionato)-benzene/ascorbic acid as a highly active catalyst for AGET ATRP of styrene. Macromol Rapid Commun, 2009, 30: 543–547

    Article  CAS  Google Scholar 

  57. Bai LJ, Zhang LF, Zhu J, Cheng ZP, Zhu XL. Iron(III)-mediated AGET ATRP of styrene using tris(3,6-dioxaheptyl)amine as a ligand. J Polym Sci Part A: Polym Chem, 2009, 47: 2002–2008

    Article  CAS  Google Scholar 

  58. Zhang LF, Cheng ZP, Zhang ZB, Xu DY, Zhu XL. Fe(III)-catalyzed AGET ATRP of styrene using triphenyl phosphine as ligand. Polym Bull, 2010, 64: 233–244

    Article  CAS  Google Scholar 

  59. Zhang LF, Cheng ZP, Tang F, Li Q, Zhu XL. Iron(III)-mediated atom transfer radical polymerization of methyl methacrylate using activators generated by electron transfer. Macromol Chem Phys, 2008, 209: 1705–1713

    Article  CAS  Google Scholar 

  60. Gromada J, Matyjaszewski K. Simultaneous reverse and normal initiation in atom transfer radical polymerization. Macromolecules, 2001, 34: 7664–7671

    Article  CAS  Google Scholar 

  61. Zhang LF, Miao J, Cheng ZP, Zhu XL. Iron-mediated ICAR ATRP of styrene and methyl methacrylate in the absence of thermal radical Initiator. Macromol Rapid Commun, 2010, 31: 275–280

    Article  CAS  Google Scholar 

  62. Zhu J, Zhu XL, Cheng ZP, Liu F, Lu JM. Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate(CPDN). Polymer, 2002, 43: 7037–7042

    Article  CAS  Google Scholar 

  63. Zhu J, Zhu XL, Zhou D, Chen JY. Living free radical polymerization of styrene with 2-cyanoprop-2-yl dithionaphthalate as RAFT agent. e-Polymer, 2003, no.043

  64. Wang XY, Zhu J, Zhou D, Zhu XL. The reversible addition-fragmentation chain transfer polymerization of styrene initiated by tetraethylthiuram disulfide. Polymer, 2005, 46: 3515–3521

    Article  CAS  Google Scholar 

  65. Zhu J, Zhu XL, Cheng ZP, Lu JM, Liu F. Reversible additionfragmentation chain-transfer polymerization of octadecyl acrylate. J Macromol Sci Part A: Pure Appl Chem, 2003, A40: 963–975

    CAS  Google Scholar 

  66. Zhu J, Zhou D, Zhu XL, Chen GJ. Reversible addition-fragmentation chain transfer polymerization of glycidyl methacrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. J Polym Sci Part A: Polym Chem, 2004, 42: 2558–2565

    Article  CAS  Google Scholar 

  67. Zhu J, Zhu XL, Zhou D. “Living”/controlled free radical polymerization using bis(thionaphthoyl) disulfide as a source of RAFT agent. J Macromol Sci Part A: Pure Appl Chem, 2004, A41: 827–838

    CAS  Google Scholar 

  68. Zhu J, Zhou D, Zhu XL, Cheng ZP. Reversible addition-fragmentation chain-transfer polymerization of iso-butyl methacrylate. J Macromol Sci Part A: Pure Appl Chem, 2004, A41: 1059–1070

    CAS  Google Scholar 

  69. Zhang W, Zhu XL, Zhou D, Wang XM, Zhu J. Reversible addition-fragmentation chain transfer polymerization of 2-naphthyl acrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. J Polym Sci Part A: Polym Chem, 2005, 43: 2632–2642

    Article  CAS  Google Scholar 

  70. Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Skidmore MA, Thang SH. Thiocarbonylthio compounds (S=C(Z)S−R) in free radical polymerization with reversible additionfragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules, 2003, 36: 2273–2283

    Article  CAS  Google Scholar 

  71. Quinn JF, Barner L, Barner-Kowollik C, Rizzardo E, Davis TP. Reversible addition-fragmentation chain transfer polymerization initiated with ultra-violet radiation. Macromolecules, 2002, 35: 7620–7627

    Article  CAS  Google Scholar 

  72. Chen GJ, Zhu XL, Zhu J, Cheng ZP. Plasma-intiated controlled/living radical polymerization of methyl methacrylate in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol Rapid Commun, 2004, 25: 818–824

    Article  CAS  Google Scholar 

  73. Zhang ZB, Zhu XL, Zhu J, Cheng ZP, Zhu SP. Thermal initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate in the presence of oxygen. J Polym Sci Part A: Polym Chem, 2006, 44: 3343–3354

    Article  CAS  Google Scholar 

  74. Zhang Z. B, Zhu J, Cheng ZP, Zhu XL. Reversible additionfragmentation chain transfer (RAFT) polymerization of styrene in the presence of oxygen. Polymer, 2007, 48: 4393–4400

    Article  CAS  Google Scholar 

  75. Barnes CE. Mechanism of vinyl polymerization. I. Role of oxygen. J Am Chem Soc, 1945, 67: 217–220

    Article  CAS  Google Scholar 

  76. Lehrle RS, Shortland A. A study of the purification of methyl methacrylate suggests that the “thermal” polymerisation of this monomer is initiated by adventitious peroxides. Eur Polym J, 1988, 24: 425–429

    Article  CAS  Google Scholar 

  77. Zhang ZB, Zhu XL, Zhu J, Cheng ZP. Thermal polymerization of methyl (meth)acrylate via reversible addition-fragmentation chain transfer (RAFT) process. Polymer, 2006, 47: 6970–6977

    Article  CAS  Google Scholar 

  78. Zhou D, Zhu XL, Zhu J, Yin HS. Influence of the chemical structure of dithiocarbamates with different N-groups on the RAFT polymerization of styrene. J Polym Sci Part A: Polym Chem, 2005, 43: 4849–4856

    Article  CAS  Google Scholar 

  79. Zhou D, Zhu XL, Zhu J, Hu LH, Cheng ZP. Synthesis of well-defined carbazole group labeled polymer via RAFT polymerization and study on the optical properties. e-Polymer, 2006, no.059

  80. Yin HS, Zhu XL, Zhou D, Zhu J. RAFT polymerization of styrene using benzoimidazole dithiocarbamate as RAFT agent. J Appl Polym Sci, 2006, 100: 560–564

    Article  CAS  Google Scholar 

  81. Yin HS, Cheng ZP. Zhu J, Zhu XL. RAFT polymerization of styrene in the presence of 2-nonyl-benzoimidazole-1-carbodithioic acid benzyl ester. J Macromol Sci Part A: Pure Appl Chem, 2007, 44: 315–320

    Article  CAS  Google Scholar 

  82. Xu J, Zhang W, Zhou NC, Zhu J, Cheng ZP, Zhu XL. Synthesis and characterization of triphenylamine and bis(indolyl)methane centerfunctionalized polymer via reversible addition-fragmentation chain transfer polymerization. e-Polymer, 2008, no.024

  83. Zhou D, Zhu XL, Zhu J, Hu LH, Cheng ZP. Influence of the chemical structure of dithiocarbamates with different R groups on the reversible addition-fragmentation chain transfer polymerization. J Appl Polym Sci, 2007, 103: 982–988

    Article  CAS  Google Scholar 

  84. Zhou D, Zhu XL, Zhu J, Hu LH, Cheng ZP. 2-oxo-Tetrahydrofuran-3-yl 9H-carbazole-9-carbodithioate mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. J Appl Polym Sci, 2007, 104: 2913–1918

    Article  CAS  Google Scholar 

  85. Zhou D, Zhu XL, Zhu J, Cheng ZP. Synthesis and characterization of fluorescence end-labelled poly(styrene) via reversible additionfragmentation chain transfer (RAFT) polymerization. J Polym Sci Part A: Polym Chem, 2008, 46: 6198–6205

    Article  CAS  Google Scholar 

  86. Fu JW, Cheng ZP, Zhou NC, Zhu J, Zhang W, Zhu XL. Facile synthesis of fluorescent ABA type amphiphilic triblock copolymers via RAFT polymerization and their aggregation behavior in a selective solvent. e-Polymer, 2009, no.018

  87. Zhou NC, Zhang ZB, Zhang W, Zhu J, Zhu XL. RAFT polymerization of styrene mediated by naphthyl-containing raft agents and optical properties of the polymers. Polymer, 2009, 50: 4352–4362

    Article  CAS  Google Scholar 

  88. Zhu J, Zhu XL, Zhou D, Chen JY, Wang XY. Study on reversible addition-fragmentation chain transfer (RAFT) polymerization of MMA in the presence of 2-cyanoprop-2-yl 1-dithiophenanthrenate (CPDPA). Eur Polym J, 2004, 40: 743–749

    Article  CAS  Google Scholar 

  89. Zhou NC, Lu LD, Zhu XL, Yang XJ, Wang X, Zhu J, Zhou D. Preparation and characterization of anthracene end-capped polystyrene via reversible addition-fragmentation chain transfer polymerization. Polym. Bull, 2006, 57: 491–498

    Article  CAS  Google Scholar 

  90. Zhou NC, Zhu J, Zhang ZB, Zhu XL. RAFT polymerization of styrene using dithioester with anthracene Z group as chain transfer agent. e-Polymer, 2007, no.137

  91. Fu JW, Cheng ZP, Zhou NC, Zhu J, Zhang W, Zhu XL. Reversible addition-fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer, 2008, 49: 5431–5438

    Article  CAS  Google Scholar 

  92. Zhou NC, Lu LD, Zhu J, Yang XJ, Wang X, Zhu XL. Synthesis of novel polystyrene end-capped with pyrene via reversible addition-fragmentation chain transfer polymerization. Polymer, 2007, 48: 1255–1260

    Article  CAS  Google Scholar 

  93. Yu LP, Zhu J, Cheng ZP, Zhang ZB, Zhu XL. Synthesis and self-assembly behavior of azobenzene-centered (Co) polymer via reversible addition-fragmentation chain transfer (RAFT) polymerization. e-Polymer, 2007, no.092

  94. Wan XM, Zhang ZB, Zhu XL, Zhu J, Cheng ZP. Preparation of azobenzene-terminated polymers via reversible additional-fragmentation chain transfer (RAFT) polymerization. e-Polymer, 2008, no.088

  95. Xue XQ, Zhang W, Cheng ZP, Zhu J, Zhu XL. A novel azo-containing dithiocarbamate used for living radical polymerization of methacrylate and styrene. J Polym Sci Part A: Polym Chem, 2008, 46: 5626–5637

    Article  CAS  Google Scholar 

  96. Zhang WD, Zhang W, Cheng ZP, Zhou NC, Zhu XL. Atom transfer radical polymerization of methyl methacrylate high efficiently initiated by azo-containing iniferter reagents. J Macromol Sci Part A: Pure Appl Chem, 2008, 45: 850–856

    Article  CAS  Google Scholar 

  97. Ma F, Zhou NC, Zhu J, Zhang W, Fan LJ, Zhu XL. Light-driven fluorescence enhancement of phenylazo indazole-terminated polystyrene. Eur Polym J, 2009, 45: 2131–2137

    Article  CAS  Google Scholar 

  98. Zhou NC, Lu LD, Zhu XL, Yang XJ, Wang X, Zhu J, Cheng ZP. Synthesis of 1,3-benzodioxole end functionalized polymers via reversible addition-fragmentation chain transfer polymerization. J Appl Polym Sci, 2006, 99: 3535–3539

    Article  CAS  Google Scholar 

  99. Zhou NC, Zhang ZB, Zhu J, Cheng ZP, Zhu XL. RAFT polymerization of styrene mediated by naphthalene-containing RAFT agents and optical properties of the polymers. Macromolecules, 2009, 42: 3898–3905

    Article  CAS  Google Scholar 

  100. Chen QF, Zhang ZB, Zhou NC, Zhu J, Pan QM, Zhu XL. RAFT polymerization of MMA in the presence of ferrocene: A new way to realize the rate enhancement. J Polym Sci Part A: Polym. Chem, 2009, 47: 3607–3615

    Article  CAS  Google Scholar 

  101. Yu ZQ, Ji XL, Ni PH. Living radical miniemulsion polymerization by RAFT in the presence of beta-cyclodextrin. Colloid Polym Sci, 2006, 285: 211–218

    Article  CAS  Google Scholar 

  102. Zhou XD, Ni PH, Yu ZQ. Comparison of RAFT polymerization of methyl methacrylate in conventional emulsion and miniemulsion systems. Polymer, 2007, 48: 6262–6271

    Article  CAS  Google Scholar 

  103. Zhang F, Ni PH, Xiong QF, Yu ZQ. Reversible addition-fragmentation chain transfer/miniemulsion polymerization of butyl methacrylate in the presence of β-cyclodextrin. J Polym Sci Part A: Polym Chem, 2005, 43: 2931–2940

    Article  CAS  Google Scholar 

  104. Xiong QF, Ni PH, Zhang F, Yu ZQ. Synthesis and characterization of 2-(dimethylamino)ethyl methacrylate homopolymers via aqueous RAFT polymerization and their application in miniemulsion polymerization. Polym Bull, 2004, 53: 1–8

    Article  CAS  Google Scholar 

  105. Zhou XD, Ni PH, Yu ZQ, Zhang F. Comparison of RAFT polymerization of methyl methacrylate in conventional emulsion and miniemulsion systems. J Polym Sci Part A: Polym Chem, 2007, 45: 471–484

    Article  CAS  Google Scholar 

  106. Xu WJ, Zhu XL, Cheng ZP, Chen GJ, Zhu J. Bulk polymerization of styrene using tetramethylthiuram disulfide as initiator in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy. J Polym Sci Part A: Polym Chem, 2005, 43: 543–551

    Article  CAS  Google Scholar 

  107. Zhang W, Zhu XL, Zhu J, Chen JY. Atom transfer radical polymerization of styrene using the novel initiator ethyl 2-N,N-(diethylamino) dithiocarbamoyl-butyrate. J Polym Sci Part A: Polym Chem, 2006, 44: 32–41

    Article  CAS  Google Scholar 

  108. Zhang W, Zhu XL, Cheng ZP, Zhu J. Atom transfer radical polymerizations of methyl methacrylate and styrene using an iniferter reagent as initiator. J Appl Polym Sci, 2007, 106: 230–237

    Article  CAS  Google Scholar 

  109. Zhang W, Wang CC, Li DG, Song Q, Cheng ZP, Zhu XL. Atom transfer radical polymerization of styrene using multifunctional iniferter reagents as initiators. Macromol Symp, 2008, 261: 23–31

    Article  CAS  Google Scholar 

  110. Zhang W, Zhu XL; Zhu J, Cheng ZP. Radical polymerization of methacrylate using a new catalyst copper(II) N,N′-butyldithiocarbamate. Macromol Chem Phys, 2004, 205: 806–813

    Article  CAS  Google Scholar 

  111. Zhang ZB, Wang WX, Xia HD, Zhu J, Zhang W, Zhu XL. Single-electron transfer living radical polymerization (SET-LRP) of methyl methacrylate (MMA) with a typical RAFT agent as an initiator. Macromolecules, 2009, 42: 7360–7366

    Article  CAS  Google Scholar 

  112. Zhang ZB, Zhang W, Zhu XL, Cheng ZP, Zhu J. Living/controlled free radical polymerization of MMA in the presence of cobalt(II) 2-ethylhexanoate: A switch from RAFT to ATRP mechanism. J Polym Sci Part A: Polym Chem, 2007, 45: 5722–5730

    Article  CAS  Google Scholar 

  113. Xu WJ, Zhu XL, Cheng ZP, Chen JY. Atom transfer radical polymerization of lauryl methacrylate. Appl Polym Sci, 2003, 90: 1117–1125

    Article  CAS  Google Scholar 

  114. Xu WJ, Zhu XL, Cheng ZP, Chen JY, Lu JM. Atom transfer radical polymerization of hexadecyl acrylate using cuscn as the catalyst macromolecular research. Macromol Res, 2004, 12: 32–37

    CAS  Google Scholar 

  115. Li G, Zhu XL, Zhu J, Cheng ZP, Zhang W. Homogeneous reverse atom transfer radical polymerization of glycidyl methacrylate and ring-opening reaction of the pendant oxirane ring. Polymer, 2005, 46: 12716–12721

    Article  CAS  Google Scholar 

  116. Wang G, Zhu XL, Wu JH, Zhu J, Chen XR, Cheng ZP. Synthesis and photoinduced surface-relief grating of well-defined azo-containing polymethacrylates via atom transfer radical polymerization. J Appl Polym Sci, 2007, 106: 1234–1242

    Article  CAS  Google Scholar 

  117. Zhang YY, Zhang W, Chen XR, Cheng ZP, Wu JH, Zhu J, Zhu XL. Synthesis of novel three-arm star azo side-chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. J Polym Sci Part A: Polym Chem, 2008, 46: 777–789

    Article  CAS  Google Scholar 

  118. Zhao K, Zhu XL, Cheng ZP, Wang G, Zhu J. Atom transfer radical polymerization of styrene with 2-(1-bromoethyl)-anthraquinone as an initiator. J Appl Polym Sci, 2006, 102: 2081–2085

    Article  CAS  Google Scholar 

  119. Cheng ZP, Zhu XL, Zhu J, Lu JM, Yu JH. Synthesis of a well-defined naphthalene-labeled polystyrene via atom transfer radical polymerization J Macromol Sci Part A: Pure Appl Chem, 2005, 42: 341–349

    Article  CAS  Google Scholar 

  120. Zhang W, Zhou NC, Zhu J, Zhu XL. Synthesis of novel three-arm star azo side-chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. J Polym Sci Part A: Polym Chem, 2006, 44: 510–518

    Article  CAS  Google Scholar 

  121. Zhao K, Cheng ZP, Zhang ZB, Zhu J, Zhu XL. Synthesis and characterization of AB2-type star polymers via combination of ATRP and click chemistry. Polym Bull, 2009, 63: 355–364

    Article  CAS  Google Scholar 

  122. Wang G, Zhu XL, Cheng ZP, Zhu J. Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and “click” chemistryJ. e-Polymer, 2005, no.035

  123. Wang G, Zhu XL, Cheng ZP, Zhu J. Azobenzene-based initiator for atom transfer radical polymerization of methyl methacrylate. J Polym Sci Part A: Polym Chem. 2005, 43: 2358–2367

    Article  CAS  Google Scholar 

  124. Xu WJ, Zhu XL, Cheng ZP. Zhu J. J Macromol Sci Part A: Pure Appl Chem, 2006, 43: 393–403

    Article  CAS  Google Scholar 

  125. Feng P, Zhu J, Cheng ZP, Zhang ZB, Zhu XL. Reversible additionfragmentation chain transfer polymerization of 7-(4-(acryloyloxy)butoxy) coumarin. Polymer, 2007, 48: 5859–5866

    Article  CAS  Google Scholar 

  126. Jin YH, Zhu J, Zhang ZB, Cheng ZP, Zhang W, Zhu XL. Synthesis and characterizations of 1,2,3-triazole containing polymers via reversible additionfragmentation chain transfer (RAFT) polymerization. Eur Polym J, 2008, 44: 1743–1751

    Article  CAS  Google Scholar 

  127. Zhang YY, Cheng ZP, Chen XR, Zhang W, Wu JH, Zhu J, Zhu XL. Synthesis and photoresponsive behaviors of well-defined azobenzene-containing polymers via RAFT polymerization. Macromolecules, 2007, 40: 4809–4817

    Article  CAS  Google Scholar 

  128. Yu LP, Zhang ZB, Chen XR, Zhang W, Wu JH, Cheng ZP, Zhu J, Zhu XL. Synthesis and photo-induced birefringence and surface-relief-gratings of tetrazolecontaining azo polymers via RAFT polymerization. J Polym Sci Part A: Polym Chem, 2008, 46: 682–691

    Article  CAS  Google Scholar 

  129. Cao HZ, Zhang W, Zhu J, Chen XR, Cheng ZP, Wu JH, Zhu XL. Azo polymers with electronical push and pull structures prepared via RAFT polymerization and its photoinduced birefringence behavior. Express Polym Lett, 2008, 2: 589–601

    Article  CAS  Google Scholar 

  130. Sun B, Zhu XL, Zhu J, Cheng ZP, Zhang ZB. A novel synthetic method for the well-defined polymer containing benzotriazole and push-pull bisazobenzene chromophore. Macromol Chem Phys, 2007, 208: 1101–1109

    Article  CAS  Google Scholar 

  131. Zhou D, Zhu XL, Zhu J, Cheng ZP. Synthesis and characterization of novel copolymer containing pyridylazo-2-naphthol (PAN) unit via reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2008, 49: 3048–3053

    Article  CAS  Google Scholar 

  132. Xu WJ, Zhu XL, Zhu J, Cheng ZB. Preparation and characterization of optically active polymers containing pendent and terminal chiral unit via atom transfer radical polymerization. J Polym Sci Part A: Polym Chem, 2006, 44: 1502–1513

    Article  CAS  Google Scholar 

  133. Zhou NC, Xu WJ, Zhang Y, Zhu J, Zhu XL. Preparation and characterization of optically active polystyrene via a chiral nitroxidemediated polymerization. J Polym Sci Part A: Polym Chem, 2006, 44: 1522–1528

    Article  CAS  Google Scholar 

  134. Wang J, Zhu XL, Cheng ZP, Zhang ZB, Zhu J. Preparation, characterization and chiral recognition of optically active polymers containing pendent chiral units via reversible addition-fragmentation chain transfer polymerization. J Polym Sci Part A: Polym Chem, 2007, 45: 3788–3797

    Article  CAS  Google Scholar 

  135. Zhu XL, Gu YR, Chen GJ, Cheng ZP, Lu JM. Synthesis of poly (octadecyl acrylate-b-styrene-b-octadecyl acrylate) triblock copolymer by atom transfer radical polymerization. J Appl Polym Sci, 2004, 93: 1539–1545

    Article  CAS  Google Scholar 

  136. Hu DJ, Cheng ZP, Wang G, Zhu XL. Synthesis of ABA triblock copolymer of poly(potassium acrylate-styrene-potassium acrylate) by atom transfer radical polymerization and the self-assembly in selective solvents. Polymer, 2004, 45: 6525–6532

    Article  CAS  Google Scholar 

  137. Zhang LF, Cheng ZP, Zhou NC, Zhang RM, Zhu XL. Synthesis of amphiphilic ABCBA-type pentablock copolymer from consecutive atrps and self-assembly in aqueous solution. Macromol Symp, 2008, 261: 54–63

    Article  CAS  Google Scholar 

  138. Edmondson S, Osborne VL, Huck WTS. Polymer brushes via surface-initiated polymerizations. Chem Soc Rev, 2004, 33: 14–22

    Article  CAS  Google Scholar 

  139. Brinks MK, Studer A. Polymer Brushes by nitroxide-mediated polymerization. Macromol Rapid Commun, 2009, 30, 1043–1057

    Article  CAS  Google Scholar 

  140. Zhao B, Zhu L. Mixed polymer brush-grafted particles: A new class of environmentally responsive nanostructured materials Macromolecules, 2009, 42: 9369–9383

    Article  CAS  Google Scholar 

  141. Inoue K. Functional dendrimers, hyperbranched and star polymers Prog Polym Sci, 2000, 25: 453–571

    Article  CAS  Google Scholar 

  142. Hirao A, Hayashi M, Loykulnant S, Sugiyama K. Precise syntheses of chain-multi-functionalized polymers, star-branched polymers,star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog Polym Sci, 2005, 30: 111–182

    Article  CAS  Google Scholar 

  143. McKee MG, Unal S, Wilkes GL, Long TE. Branched polyesters:recent advances in synthesis and performance. Prog Polym Sci, 2005, 30: 507–539

    Article  CAS  Google Scholar 

  144. Calderon M, Quadir MA, Sharma SK, Haag R. Dendritic polyglycerols for biomedical applications. Adv Mater, 2010, 22: 190–218

    Article  CAS  Google Scholar 

  145. Hu DJ, Cheng ZP, Zhu J, Zhu XL. The ATRP of amphiphilic brush copolymers of poly (styrene-g-2-(dimethylamino)ethyl methacrylate) and their self-assembly in selective solvents. Polymer, 2005, 46: 7563–7571

    Article  CAS  Google Scholar 

  146. Chen GJ, Zhu XL, Cheng ZP, Lu JM. Synthesis and characterization of poly(vinyl chloride-co-vinyl acetate)-graft-poly[(meth)acrylates] by atom transfer radical polymerization. J Appl Polym Sci, 96: 183–189

  147. Cheng ZP, Zhu XL, Kang ET, Neoh KG. Brush-type amphiphilic diblock copolymers from “living”/controlled radical polymerizations and their aggregation behavior. Langmuir, 2005, 21: 7180–7185

    Article  CAS  Google Scholar 

  148. Cheng ZP, Zhu XL, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res, 2005, 44: 7098–7104

    Article  CAS  Google Scholar 

  149. Cheng ZP, Zhu XL, Shi ZL, Neoh KG, Kang ET. Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization of 4-vinylpyridine and quaternization. Surf Rev Lett, 2006, 13: 313–318

    Article  CAS  Google Scholar 

  150. Cheng ZP, Zhang LF, Zhu XL, Kang ET, Neoh KG. Organic/inorganic hybrid nanospheres coated with palladium/P4VP shells from surface-initiated atom transfer radical polymerization. J Polym Sci Part A: Polym Chem, 2008, 46: 2119–2131

    Article  CAS  Google Scholar 

  151. Zhang F, Zhang ZB, Zhu XL, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials, 2008, 29: 4751–4759

    Article  CAS  Google Scholar 

  152. Cheng ZP, Zhu XL, Kang ET, Neoh KG. Modification of poly(ether imide) membranes via surface-initiated atom transfer radical polymerization. Macromolecules, 2006, 39: 1660–1663

    Article  CAS  Google Scholar 

  153. Cheng ZP, Zhu XL, Fu GD, Kang ET, Neoh KG. Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP. Macromolecules, 2005, 38: 7187–7192

    Article  CAS  Google Scholar 

  154. Zhang LF, Cheng ZP, Zhou NC, Shi SP, Su XR, Zhu XL. Synthesis of miktoarm dumbbell-like amphiphilic triblock copolymer by combination of consecutive RAFT polymerizations and ATRP. Polym. Bull, 2009, 62: 11–22

    Article  CAS  Google Scholar 

  155. Wang SM, Cheng ZP, Zhu J, Zhang ZB, Zhu XL. Synthesis of amphiphilic and thermosensitive graft copolymers with fluorescence P(st-co-(p-CMS))-g-PNIPAAM by combination of NMP and RAFT methods. J Polym Sci Part A: Polym Chem, 2007, 45: 5318–5328

    Article  CAS  Google Scholar 

  156. Zhang WD, Zhang W, Zhou NC, Zhu J, Cheng ZP, Zhu XL. Synthesis of miktoarm star amphiphilic block copolymers via combination of NMRP and ATRP and investigation on self-assembly behaviours. J Polym Sci Part A: Polym Chem, 2009, 47: 6304–6315

    Article  CAS  Google Scholar 

  157. Zhang WD, Zhang W, Zhu J, Zhang ZB, Zhu XL. Controlled synthesis of ph-responsive amphiphilic A2B2 miktoarm star copolymers by combination of SET-LRP and RAFT polymerization. J Polym Sci Part A: Polym Chem, 2009, 47: 6908–6918

    Article  CAS  Google Scholar 

  158. Zhu J, Zhu XL, Kang ET, Neoh KG. Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry. Polymer, 2007, 48: 6992–6999

    Article  CAS  Google Scholar 

  159. Chen F, Cheng ZP, Zhu J, Zhang W, Zhu XL. Synthesis of poly(vinyl acetate) with fluorescence via a combination of RAFT/MADIX and “click” chemistry. Eur Polym J, 2008, 44: 1789–1795

    Article  CAS  Google Scholar 

  160. Li DG, Zhu J, Cheng ZP, Zhang W, Zhu XL. A combination of RAFT and “click” chemistry techniques to synthesize polymeric europium complexes with selective fluorescence emission. React Funct Polym, 2009, 69: 240–245

    Article  CAS  Google Scholar 

  161. Zhang WD, Zhang W, Zhang ZB, Zhu J, Pan QM, Zhu XL. Synthesis and characterization of AB2-type star polymers via combination of ATRP and click chemistry. Polym Bull, 2009, 63: 467–383

    Article  CAS  Google Scholar 

  162. Zhang L, Zhang W, Zhou NC, Zhu J, Zhang ZB, Cheng ZP, Zhu XL. Preparation and characterization of linear and miktoarm star side-chain liquid crystalline block copolymers with p-methoxyazobenzene moieties via a combination of ATRP and ROP. J. Macromol Sci Part A: Pure Appl Chem, 2009, 46: 870–885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YingFeng Tu or XiuLin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, Y., Cheng, Z., Zhang, Z. et al. Mechanism study and molecular design in controlled/“living” radical polymerization. Sci. China Chem. 53, 1605–1619 (2010). https://doi.org/10.1007/s11426-010-4051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4051-7

Keywords

Navigation