Skip to main content
Log in

Evaluation of the individual hydrogen bonding energies in N-methylacetamide chains

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The individual hydrogen bonding energies in N-methylacetamide chains were evaluated at the MP2/6-31+G** level including BSSE correction and at the B3LYP/6-311++G(3df,2pd) level including BSSE and van der Waals correction. The calculation results indicate that compared with MP2 results, B3LYP calculations without van der Waals correction underestimate the individual hydrogen bonding energies about 5.4 kJ mol−1 for both the terminal and central hydrogen bonds, whereas B3LYP calculations with van der Waals correction produce almost the same individual hydrogen bonding energies as MP2 does for those terminal hydrogen bonds, but still underestimate the individual hydrogen bonding energies about 2.5 kJ mol−1 for the hydrogen bonds near the center. Our calculation results show that the individual hydrogen bonding energy becomes more negative (more attractive) as the chain becomes longer and that the hydrogen bonds close to the interior of the chain are stronger than those near the ends. The weakest individual hydrogen bonding energy is about −29.0 kJ mol−1 found in the dimer, whereas with the growth of the N-methylacetamide chain the individual hydrogen bonding energy was estimated to be as large as −62.5 kJ mol−1 found in the N-methylacetamide decamer, showing that there is a significant hydrogen bond cooperative effect in N-methylacetamide chains. The natural bond orbital analysis indicates that a stronger hydrogen bond corresponds to a larger positive charge for the H atom and a larger negative charge for the O atom in the N-H⋯O=C bond, corresponds to a stronger second-order stabilization energy between the oxygen lone pair and the N-H antibonding orbital, and corresponds to more charge transfer between the hydrogen bonded donor and acceptor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jerffery GA. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997. 1–2

    Google Scholar 

  2. Scheiner S. Hydrogen Bonding: A Theoretical Perspective. New York: Oxford University Press, 1997. 11–14

    Google Scholar 

  3. Kang YK. Which functional form is appropriate for hydrogen bond of amides. J Phys Chem B, 2000, 104: 8321–8326

    Article  CAS  Google Scholar 

  4. Wang CS, Zhang Y, Gao K, Yang ZZ. A new scheme for determining the intramolecular seven-membered ring N-H⋯O=C hydrogen-bonding energies of glycine and alanine peptides. J Chem Phys, 2005, 123: 024307

    Article  CAS  Google Scholar 

  5. Yang Y. Theoretical study of the S-H⋯O blue-shifted hydrogen bond. Int J Quantum Chem, 2009, 109: 266–274

    Article  CAS  Google Scholar 

  6. Zhang Y, Wang CS, Yang ZZ. Estimation on the interamolcular 8- and 12-membered ring N-H⋯O=C hydrogen bonding energies in β-peptides. J Theor Comput Chem, 2009, 8: 279–297

    Article  CAS  Google Scholar 

  7. Deshmukh MM, Bartolotti LJ, Gadre SR. Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach. J Phys Chem A, 2008, 112: 312–321

    Article  CAS  Google Scholar 

  8. Jiang XN, Sun CL, Wang CS. A scheme for rapid prediction of cooperativity in hydrogen bond chains of formamides, acetamides, and N-methylformamides. J Comput Chem, 2010, 31: 1410–1420

    CAS  Google Scholar 

  9. Kobko N, Paraskevas L, del Rio E, Dannenberg JJ. Cooperativity in amide hydrogen bonding chains: Implications for protein-folding models. J Am Chem Soc, 2001, 123: 4348–4349

    Article  CAS  Google Scholar 

  10. Kobko N, Dannenberg JJ. Cooperativity in amide hydrogen bonding chains. Relation between energy, position, and H-bond chain length in peptide and protein folding models. J Phys Chem A, 2003, 107: 10389–10395

    CAS  Google Scholar 

  11. Kobko N, Dannenberg JJ. Cooperativity in amide hydrogen bonding chains. A comparison between vibrational coupling through hydrogen bonds and covalent bonds. Implications for peptide vibrational spectra. J Phys Chem A, 2003, 107: 6688–6697

    Article  CAS  Google Scholar 

  12. Deshmukh MM, Gadre SR. Estimation of N-H⋯O=C intramolecular hydrogen bond energy in polypeptides. J Phys Chem A, 2009, 113: 7927–7932

    Article  CAS  Google Scholar 

  13. Kennedy RJ, Tsang KY, Kemp DS. Consistent helicities from CD and template t/c data for N-templated polyalanines: Progress toward resolution of the alanine helicity problem. J Am Chem Soc, 2002, 124: 934–944

    Article  CAS  Google Scholar 

  14. Tan HW, Qu WW, Chen GJ, Liu RZ. The role of charge transfer in the hydrogen bond cooperative effect of cis-N-methylformamide oligomers. J Phys Chem A, 2005, 109: 6303–6308

    Article  CAS  Google Scholar 

  15. Wang ZX, Wu C, Lei HX, Duan Y. Accurate ab initio study on the hydrogen-bond pairs in protein secondary structures. J Chem Theory Comput, 2007, 3: 1527–1537

    Article  CAS  Google Scholar 

  16. Asensio A, Kobko N, Dannenberg JJ. Cooperative hydrogen-bonding in adenine-thymine and guanine-cytosine base pairs. Density functional theory and Møller-Plesset molecular orbital study. J Phys Chem A, 2003, 107: 6441–6443

    Article  CAS  Google Scholar 

  17. Ludwig R, Weinhold F, Farrar TC. Structure of liquid N-methylacetamide: Temperature dependence of NMR chemical shifts and quadrupole coupling constants. J Phys Chem A, 1997, 101: 8861–8870

    Article  CAS  Google Scholar 

  18. Huelsekopf M, Ludwig R. Correlations between structural, NMR and IR spectroscopic properties of N-methylacetamide. Magn Reson Chem, 2001, 39: S127–S134

    Article  CAS  Google Scholar 

  19. Sun CL, Jiang XN, Wang CS. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides. J Comput Chem, 2009, 30: 2567–2575

    Article  CAS  Google Scholar 

  20. Ireta J, Neugebauer J, Scheffler M, Rojo A, Galvan M. Density functional theory study of the cooperativity of hydrogen bonds in finite and infinite α-helices. J Phys Chem B, 2003, 107: 1432–1437

    Article  CAS  Google Scholar 

  21. Scheiner S. Contributions of NH⋯O and CH⋯O hydrogen bonds to the stability of β-sheets in proteins. J Phys Chem B, 2006, 110: 18670–18679

    Article  CAS  Google Scholar 

  22. Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys Rev, 1934, 46: 618–622

    Article  Google Scholar 

  23. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr TG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  25. Rao L, Ke H, Fu G, Xu X, Yan Y. Performance of several density functional theory methods on describing hydrogen-bond interactions. J Chem Theory Comput, 2009, 5: 86–96

    Article  CAS  Google Scholar 

  26. Halgren TA. Representation of van der Waals (vdW) interactions in molecular mechanics force fields: Potential form, combination rules, and vdW parameters. J Am Chem Soc, 1992, 114: 7827–7843

    Article  CAS  Google Scholar 

  27. Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. J Comput Chem, 2000, 21: 1049–1074

    Article  CAS  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc, 1995, 117: 5179–5197

    Article  CAS  Google Scholar 

  29. Moyna G, Williams HJ, Nachman RJ, Scott AI. Conformation in solution and dynamics of a structurally constrained linear insect kinin pentapeptide analogue. Biopolymers, 1999, 49: 403–413

    Article  CAS  Google Scholar 

  30. Ross WS, Hardin CC. Ion-induced stabilization of the G-DNA quadruplex: Free energy perturbation studies. J Am Chem Soc, 1994, 116: 6070–6080

    Article  CAS  Google Scholar 

  31. Aquist J. Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem, 1990, 94: 8021–8024

    Article  Google Scholar 

  32. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–566

    Article  CAS  Google Scholar 

  33. Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers. J Chem Phys, 1996, 105: 11024–11031

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Revision B.02. Pittsburgh (PA): Gaussian Inc. 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangSheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Wang, C. Evaluation of the individual hydrogen bonding energies in N-methylacetamide chains. Sci. China Chem. 53, 1754–1761 (2010). https://doi.org/10.1007/s11426-010-4047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4047-3

Keywords

Navigation