Skip to main content
Log in

Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we study how information transmission delays affect the spiking behavior of electrically coupled stochastic Hodgkin-Huxley (HH) neurons on Newman-Watts networks. It is found that the spiking behavior becomes the most regular at an optimal time delay, indicating the occurrence of delay-induced coherence resonance-like (CR-like) behavior. Interestingly, there are different CR-like types, depending on the membrane patch size of the neuron. For a smaller patch size, only single CR-like behavior occurs; while for a larger patch size, coherence bi-resonance-like (CBR) behavior appears. These findings show that the delay-induced CR-like behavior is closely related to the channel noise strength, and the coupled neurons may exhibit different spiking behaviors under the interplay of the channel noise and time delay. Therefore, the channel noise should be taken into account in the study of time delay-related spiking activity in stochastic HH neurons. This work provides new insight into the role of channel noise and information transmission delays in realistic neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    CAS  Google Scholar 

  2. Lecar H, Nossal R. Theory of threshold fluctuations in nerves. Biophys J, 1971, 11:1048–1067

    Article  CAS  Google Scholar 

  3. White JA, Rubinstein JT, Kay AR. Channel noise in neurons. Trends Neurosci, 2000, 23: 131–137

    Article  CAS  Google Scholar 

  4. Fox RF, Lu Y. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E, 1994, 49: 3421–3431

    Article  CAS  Google Scholar 

  5. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neuronal Comput, 1998, 10: 1679–1703

    Article  CAS  Google Scholar 

  6. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys, 1998, 70: 223–287

    Article  CAS  Google Scholar 

  7. Jung P, Shuai J W. Optimal sizes of ion channel clusters. Europhys Lett, 2001, 56: 29–35

    Article  CAS  Google Scholar 

  8. Hänggi P. Stochastic resonance in biology—how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 2002, 3: 285–290

    Article  Google Scholar 

  9. Gong YB, Wang MS, Hou ZH, Xin HW. Optimal spike coherence and synchronization on complex Hodgkin-Huxley neuron networks. ChemPhysChem, 2005, 6: 1042–1047

    Article  CAS  Google Scholar 

  10. Shuai JW, Jung P. The dynamics of small excitable ion channel clusters. Chaos, 2006, 16: 026104

    Article  CAS  Google Scholar 

  11. Schmid G, Goychuk I, Hänggi P. Stochastic resonance as a collective property of ion channel assemblies. Europhys Lett, 2001, 56: 22–28

    Article  CAS  Google Scholar 

  12. Schmid G, Goychuk I, Hänggi P, Zeng S, Jung P. Stochastic resonance and optimal clustering for assemblies of ion channels. Fluct Noise Lett, 2004, 4: L33–L42

    Article  Google Scholar 

  13. Schmid G, Goychuk I, Hänggi P. Channel noise and synchronization in excitable membranes. Physica A, 2003, 325: 165–175

    Article  Google Scholar 

  14. Casado JM. Synchronization of two Hodgkin-Huxley neurons due to internal noise. Phys Lett A, 2003, 310: 400–406

    Article  CAS  Google Scholar 

  15. Ozer M, Uzuntarla M, Kayikcioglu T, Graham LJ, Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network. Phys Lett A, 2008, 372: 6498–6503

    Article  CAS  Google Scholar 

  16. Ozer M, Perc M, Uzuntarla M, Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving. Phys Lett A, 2009, 373: 964–968

    Article  CAS  Google Scholar 

  17. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. Amsterdam: Elsevier, 1991

    Google Scholar 

  18. Dhamala M, Jirsa VK, Ding MZ. Enhancement of neural synchrony by time delay. Phys Rev Lett, 2004, 92: 074104

    Article  CAS  Google Scholar 

  19. Rossoni E, Chen YH, Ding MZ, Feng JF. Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys Rev E, 2005, 71: 061904

    Article  CAS  Google Scholar 

  20. Burić N, Todorović K, Vasović N. Synchronization of bursting neurons with delayed chemical synapses. Phys Rev E, 2008, 78: 036211

    Article  CAS  Google Scholar 

  21. Ko TW, Ermentrout GB. Effects of axonal time delay on synchronization and wave formation in sparsely coupled neuronal oscillators. Phys Rev E, 2007, 76: 056206

    Article  CAS  Google Scholar 

  22. Roxin A, Brunel N, Hansel D. Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett, 2005, 94: 238103

    Article  CAS  Google Scholar 

  23. Wang QY, Perc M, Duan ZS, Chen GR. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  24. Wang QY, Perc M, Duan ZS, Chen GR. Delay-enhanced coherence of spiral waves in noisy Hodgkin-Huxley neuronal networks. Phys Lett A, 2008, 372: 5681–5687

    Article  CAS  Google Scholar 

  25. Wang QY, Lu QS, Chen GR. Synchronization transition by synaptic delay in coupled fast spiking neurons. Int J Bifur Chaos, 2008, 18: 1189–1198

    Article  Google Scholar 

  26. Wang QY, Duan ZS, Perc M, Chen GR. Synchronization transitions on small world neuronal networks: Effects of information transmission delay and rewiring probability. Europhys Lett, 2008, 83: 50008

    Article  CAS  Google Scholar 

  27. Xie YH, Gong YB, Hao YH, Ma XG. Synchronization transitions on complex thermo-sensitive neuron networks with time delay. Biophys Chem, 2010, 146: 126–132

    Article  CAS  Google Scholar 

  28. Wang QY, Perc M, Duan ZS, Chen GR. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E, 2009, 80: 026206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuBing Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y., Gong, Y., Lin, X. et al. Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks. Sci. China Chem. 53, 1762–1766 (2010). https://doi.org/10.1007/s11426-010-4046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4046-4

Keywords

Navigation