Skip to main content
Log in

Structures and properties of metal-free and magnesium tetrathieno[2,3-b]porphyrazine investigated using density functional theory

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculation were adopted to study the structures and properties of metal-free and magnesium tetrathieno[2,3-b]porphyrazine (TTPPzH2 and TTPPzMg) using B3LYP method with the 6–31G(d) basis set. A comparison of the geometrical structures, atomic charges, molecular orbitals, UV-vis spectra and infrared (IR) spectra among tetrathieno[2,3-b]porphyrazine (TTPPzH2), phthalocyanine (H2Pc) and porphyrazine (H2Pz) compounds was performed. The substituent effect of the thiophene heterocycle for electron-donating on the structures and properties of these compounds has been discussed. Compared with other atoms, the charge distribution of Cβ atoms adjacent to the sulfur atom is significantly influenced by the thiophene heterocycle substituents. The enlargement of the HOMO-LUMO gaps from H2Pc and MgPc to TTPPzH2 and TTPPzMg is at the origin of the observed blue shift of the Q band when moving from H2Pc to TTPPzH2 compounds. Special emphasis has been devoted to the strongest B bands for TTPPzH2 compounds which show red shift due to the large destabilization of the lower lying occupied orbitals compared with the corresponding B bands of H2Pc compounds. With the assistance of animated pictures produced on the basis of the normal coordinates, the significant peaks and vibration modes in the IR spectra of all the compounds were assigned and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moan J. Photosensitization and phototherapy. J Photochem P, 1986, 43: 681–690

    Article  CAS  Google Scholar 

  2. Kivits P, Debont R, Vanderveen J. Vanadyl phthalocyanine: An organic material for optical data recording. Appl Phys A, 1981, 26: 101–105

    Article  Google Scholar 

  3. Kasuga K, Terauchi M, Hara M, Nishie K, Sugimori T, Handa M. Photoreduction of hydrogencarbonate or ethylene catalyzed by trisodium trisulfonatophthalocyaninatoz incate(II). Bull Chem Soc Jpn, 1997, 70: 2107–2110

    Article  CAS  Google Scholar 

  4. Thompson JA, Murata K, Miller DC, Stanton JL, Broderick WE, Hoffman BM, AIbers J. Synthesis of high-purity phthalocyanines (pc): high intrinsic conductivities in the molecular conductors H2(pc)I and Ni(pc)I. Inorg. Chem, 1993, 32: 3546–3553

    Article  CAS  Google Scholar 

  5. Torre G, Vázquez P, Agulló-López F, Torres T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev, 2004, 104: 3723–3750

    Article  CAS  Google Scholar 

  6. Dini D, Hanack M, Meneghetti M. Nonlinear optical properties of tetrapyrazinoporphyrazinato indium chloride complexes due to excited-state absorption processes. J Phys Chem B, 2005, 109: 12691–12696

    Article  CAS  Google Scholar 

  7. Vagin S, Barthel M, Dini D, Hanack M. Synthesis and characterization of (octaaryltetraazaporphyrinato)indium(III) complexes for optical limiting. Inorg Chem, 2003, 42: 2683–3694

    Article  CAS  Google Scholar 

  8. Emmelius M, Pawlowski G, Vollmann HW. Materials for optical data storage. Angew Chem, 1989, 28: 1445–1471

    Article  Google Scholar 

  9. Nazeeruddin MK, Humphry-Baker R, Gratzel M, Murrer BA. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chem Commun, 1998, 719–720

  10. Groothues H, Kremer F, Schouten PG, Warman JM. Charge transport and molecular dynamics in columnar stacks of liquid crystalline phthalocyanine derivatives. Adv Mater, 1995, 7: 283–286

    Article  CAS  Google Scholar 

  11. Iino H, Hanna J, Bushby RJ, Movaghar B, Whitaker BJ, Cook MJ. Very high time-of-flight mobility in the columnar phases of a discotic liquid crystal. Appl Phys L, 2005, 87: 132102, 1–3

    Google Scholar 

  12. Chauhan SMS, Kumar A, Srinivas KA. Oxidation of thiols with molecular oxygen catalyzed by cobalt(II) phthalocyanines in ionic liquid. Chem Commun, 2003, 2348–2349

  13. Ashi T, Yoshikawa HY, Yashiro M, Masuhara H. Femtosecond laser ablation transfer and phase transition of phthalocyanine solids. Appl Surf S, 2002, 197–198: 777–781

    Article  Google Scholar 

  14. Lee BH, Jaung JY, Jang SC, Yi SC. Synthesis and optical properties of push-pull type tetrapyrazinoporphyrazines. Dyes Pigment, 2005, 65: 159–167

    Article  CAS  Google Scholar 

  15. Zimcik P, Miletin M, Ponec J, Kostka M, Fiedler Z. Synthesis and studies on photodynamic activity of new water-soluble azaphthalocyanines. J Photoch A, 2003, 155: 127–131

    Article  CAS  Google Scholar 

  16. Mitzel F, FitzGerald S, Beeby A, Faust R. Acetylenic quinoxalinoporphyrazines as photosensitisers for photodynamic therapy. J Chem Eur, 2003, 9: 1233–1241

    Article  CAS  Google Scholar 

  17. Sielcken E, VanTilborg MM, Roks MFM, Hendriks R, Drenth W, Nolte RJM. Synthesis and aggregation behavior of hosts containing phthalocyanine and crown ether subunits. J Am Chem S, 1987, 109: 4261–4265

    Article  CAS  Google Scholar 

  18. Nguyen TQ, Bushey ML, Brus LE, Nuckolls C. Tuning intermolecular attraction to create polar order and one-dimensional nanostructures on surfaces. J Am Chem S, 2002, 124: 15051–15054

    Article  CAS  Google Scholar 

  19. Michael JC, Ali JF. Phthalocyanine-related macrocycles: Cross cyclotetramerisation products from 3,4-dicyanothiophenes, 2,3-dicyano thiophene and 3,6-dialkylphthalonitriles. Tetrahedron, 2000, 56: 4085–4094

    Article  Google Scholar 

  20. Linstead RP, Noble EG, Wright JM. Phthalocyanines. Part IX. Derivatives of thiophen, thionaphthen, pyridine, and pyrazine, and a note on the nomenclature. J Chem S, 1937, 911–921

  21. Bilton JA, Linstead RP. Phthalocyanines. Part X. Experiments in the pyrrole, isooxazole, pyridazine, furan, and triazole series. J Chem S, 1937, 922–929

  22. Robert MC, Brian GF. Tetrathieno[2,3-b]porphyrazines: Thiophene analogues of phthalocyanines: A re-investigation. Dye Pigment, 1997, 33: 107–118

    Article  Google Scholar 

  23. Zhang XX, Zhang YX, Jiang JZ. Towards clarifying the N-M vibrational nature of metallo-phthalocyanines: Infrared spectrum of phthalocyanine magnesium complex: density functional calculations. Spect Act A, 2004, 60: 2195–2220

    Article  CAS  Google Scholar 

  24. Zhang XX, Zhang YX, Jiang JZ. Infrared spectra of metal-free, N′,N-dideuterio, and magnesium porphyrins: density functional calculations. Spect Act A, 2005, 61: 2576–2583

    Article  CAS  Google Scholar 

  25. Zhang XX, Zhang YX, Jiang JZ. Geometry and electronic structure of metal free porphyrazine, phthalocyanine and naphthalocyanine as well as their magnesium complexes. J Mol St-Th, 2004, 673: 103–108

    CAS  Google Scholar 

  26. Ghosh A, Gassman PG, Almlof J. Substituent effects in porphyrazines and phthalocyanines. J Am Chem S, 1994, 116: 1932–1940

    Article  CAS  Google Scholar 

  27. Lamoen D, Parrinello M. Geometry and electronic structure of porphyrins and porphyrazines. Chem P Lett, 1996, 248: 309–327

    Article  CAS  Google Scholar 

  28. Hoskins BF, Mason SA, White JCB. The location of the inner hydrogen atoms of phthalocyanine: a neutron diffraction study. Chem Commun, 1969, 554–555

  29. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem.Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  30. Cai X, Zhang YX, Zhang XX, Jiang JZ. Structures and properties of metal-free and copper tetrakis(thiadiazole)porphyrazine and metal-free tetrakis(selenodiazole) porphyrazine based on density functional theory calculations. J Mol St-Th, 2007, 812: 63–70

    CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farks O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03 (revision C.02), Wallingford: Gaussian, Inc., CT, 2004

    Google Scholar 

  32. Liu ZQ, Zhang XX, Zhang YX, Jiang JZ. The molecular, electronic structures and IR and Raman spectra of metal-free, N, N′-dideuterio and magnesium tetra-2,3-pyrazino-porphyrazines: Density functional calculations. Vib Spectr, 2007, 43: 447–459

    Article  CAS  Google Scholar 

  33. Linstead RP, Whalley MJ. Conjugated macrocylces. Part XXII. Tetrazaporphin and its metallic derivatives. J Chem Soc, 1952, 4839–4846

  34. Kudrevich SV, VanLier JE. Azaanalogs of phthalocyanine: syntheses and properties. Coord Ch Re, 1996, 156: 163–182

    Article  CAS  Google Scholar 

  35. Shaposhnikov GP, Kulinich VP, Osipov YM, Smirnov RP. Optical and electrophysical properties of metal complexes tretra(1,4-dithiacyclohexeno) porphyrazine. J Chem Heter Compd, 1986, 22: 1036–1039

    Article  Google Scholar 

  36. Sammes MP. The infrared spectrum of phthalocyanine: assignment of N-H modes. J Chem Soc Perkin II, 1972, 160–162

  37. Zhang XX, Zhang YX, Jiang JZ. Isotope effect in the infrared spectra of free-base phthalocyanine and its N, N-dideuterio-derivative: density functional calculations. Vib Spectr, 2003, 33: 153–161

    Article  CAS  Google Scholar 

  38. Gong XD, Xiao HM, Tian H. Comparative studies on the structures, infrared spectrum, and thermodynamic properties of phthalocyanine using ab initio Hartree-Fock and density functional theory methods. Int J Quant, 2002, 86: 531–540

    Article  CAS  Google Scholar 

  39. Wong MW. Vibrational frequency prediction using density functional theory. Chem Phys Lett, 1996, 256: 391–399

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Sun, G., Sun, S. et al. Structures and properties of metal-free and magnesium tetrathieno[2,3-b]porphyrazine investigated using density functional theory. Sci. China Chem. 53, 1746–1753 (2010). https://doi.org/10.1007/s11426-010-4045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4045-5

Keywords

Navigation