Skip to main content
Log in

Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor. Carbon-working, carbon-counter and Ag/AgCl reference electrodes were all manually printed on the polyethylene terephthalate substrate forming the screen-printed three-electrode system by the conventional screen-printing process. As a mediator, Prussian blue could not only catalyze the electrochemical reduction of hydrogen peroxide produced from the enzyme reaction, but also keep the favorable potential around 0 V. The optimum operational conditions, including pH, potential and temperature, were investigated. The sensitivities of xanthine and hypoxanthine detections were 13.83 mA/M and 25.56 mA/M, respectively. A linear relationship was obtained in the concentration range between 0.10 μM and 4.98 μM for xanthine and between 0.50 μM and 3.98 μM for hypoxanthine. The small Michaelis-menten constant value of the xanthine oxidase biosensor was calculated to be 3.90 μM. The results indicate that the fabricated xanthine oxidase biosensor is effective and sensitive for the detection of xanthine and hypoxanthine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindberg D, Grimes C. The effect of trade globalization on food safety. Sensor Lett, 2004, 2: 161–163

    Article  Google Scholar 

  2. Hu S, Xu C, Luo J, Luo J, Cui D. Biosensor for detection of hypoxanthine based on xanthine oxidase immobilized on chemically modified carbon paste electrode. Anal Chim Acta, 2000, 412: 55–61

    Article  CAS  Google Scholar 

  3. Sugase S, Tsuda T. Determination of lactic acid, uric acid, xanthine and tyrosine in human sweat by HPLC, and the concentration variation of lactic acid in it after the intake of wine. Bunseki Kagaku, 2002, 51: 429–435

    Article  CAS  Google Scholar 

  4. Samanidou VF, Metaxa AS, Papadoyannis IN. Direct simultaneous determination of uremic toxins: Creatine, creatinine, uric acid, and xanthine in human biofluids by HPLC. J Liq Chromatogr Relat Technol, 2002, 25: 43–57

    Article  CAS  Google Scholar 

  5. Chan ST, Yao MWY, Wong YC, Wong T, Mok CS, Sin DWM. Evaluation of chemical indicators for monitoring freshness of food and determination of volatile amines in fish by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Eur Food Res Technol, 2006, 224: 67–74

    Article  CAS  Google Scholar 

  6. Olafsdottir G, Martinsdottir E, Ohelenschlager J. Methods to evaluate fish freshness in research and industry. Trends Food Sci Technol, 1997, 8: 258–265

    Article  CAS  Google Scholar 

  7. Armenta S, Coelho NMM, Roda R, Garrigues S, de la Guardia M. Seafood freshness determination through vapour phase Fourier transform infrared spectroscopy. Anal Chim Acta, 2006, 580: 216–222

    Article  CAS  Google Scholar 

  8. Smulevich G, Droghetti E, Focardi C, Coletta M, Ciaccio C, Nocentini M. A rapid spectroscopic method to detect the fraudulent treatment of tuna fish with carbon monoxide. Food Chem, 2007, 101: 1071–1077

    Article  CAS  Google Scholar 

  9. Chen XM, Lin ZJ, Chen DJ, Jia TT, Cai ZM, Wang XR, Chen X, Chen GN, Oyama M. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron, 2010, 25: 1803–1808

    Article  CAS  Google Scholar 

  10. Yuan JH, Wang K, Xia XH. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Func Mater, 2005, 15: 803–809

    Article  CAS  Google Scholar 

  11. Venugopal V. Biosensors in fish production and quality control. Biosens Bioelectron, 2002, 17: 147–157

    Article  CAS  Google Scholar 

  12. Kirgoz OA, Timur S, Wang J, Telefoncu A. Xanthine oxidase modified glassy carbon paste electrode. Electrochem Commun, 2004, 6: 913–916

    Article  Google Scholar 

  13. Hoshi T, Noguchi T, Anzai J. The preparation of amperometric xanthine sensors based on multilayer thin films containing xanthine oxidase. Mater Sci Eng C, 2006, 26: 100–103

    Article  CAS  Google Scholar 

  14. Cubukcu M, Timur S, Anik U. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta, 2007, 74: 434–439

    Article  CAS  Google Scholar 

  15. Li XH, Xie ZH, Min H, Xian YZ, Jin LT. Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on iron (III) meso-tetraphenylporphyrin nanoparticles modified glassy carbon electrode. Anal Lett, 2008, 41: 456–468

    Article  CAS  Google Scholar 

  16. Zhang M, Li L, Du Z, Xu S, Li C, Chen X, Zhang T, Wang T. Fast response amperometric biosensor for H2O2 detection based on horse-radish-peroxidase/titania-nanowires/chitosan modified glassy carbon electrode. Sensor Lett, 2009, 7: 543–549

    Article  CAS  Google Scholar 

  17. Ignatov S, Shishniashvili D, Ge B, Scheller FW, Lisdat F. Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants. Biosens Bioelectron, 2002, 17: 191–199

    Article  CAS  Google Scholar 

  18. Wang K, Chen JH, Chen J, Liu AL, Li GW, Luo HB, Lin XH, Chen YZ. A sandwich-type electrochemical biosensor for detection of bcr/abl fusion gene using locked nucleic acids on gold electrode. Electroanal, 2009, 21: 1159–1166

    Article  CAS  Google Scholar 

  19. Sun W, Gao R, Jiao K. Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B, 2007, 111: 4560–4567

    Article  CAS  Google Scholar 

  20. Mashhadizadeh MH, Talakesh M, Peste M, Momeni A, Hamidian H, Mazlum M. A novel modified carbon paste electrode for potentiometric determination of mercury(II) ion. Electroanalysis, 2006, 18: 2174

    Article  CAS  Google Scholar 

  21. Xue MH, Xu Q, Zhou M, Zhu JJ. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochem Commun, 2006, 8: 1468–1474

    Article  CAS  Google Scholar 

  22. Chen HL, Zhao L, Chen X, Zhuang ZX, Wang XR. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase in an ormosil-PVA matrix onto a Prussian Blue modified electrode. Sci China Ser-B: Chem, 2009, 52: 1128–1135

    Article  CAS  Google Scholar 

  23. Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with Prussian blue. Anal Bioanal Chem, 2005, 383: 597–604

    Article  CAS  Google Scholar 

  24. Lowinsohn D, Bertotti M. Flow injection analysis of blood l-lactate by using a Prussian Blue-based biosensor as amperometric detector. Anal Biochem, 2007, 365: 260–265

    Article  CAS  Google Scholar 

  25. Karyakin AA, Gitelmacher OV, Karyakina EE. Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal Chem, 1995, 67: 2419–2423

    CAS  Google Scholar 

  26. Wang J, Pedrero M, Sakslund H, Hammerich O, Pingarron J. Electrochemical activation of screen-printed carbon strips. Analyst, 1996, 121: 345–350

    Article  CAS  Google Scholar 

  27. de Mattos IL, Gorton L, Laurell T, Malinauskas A, Karyakin AA. Development of biosensors based on hexacyanoferrates. Talanta, 2000, 52: 791–799

    Article  Google Scholar 

  28. de Mattos IL, Gorton L, Ruzgas T. Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosens Bioelectron, 2003, 18: 193–200

    Article  Google Scholar 

  29. Li M, Zhao G, Yue Z, Huang S. Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue. Microchimica Acta, 2009, 167: 167–172

    Article  CAS  Google Scholar 

  30. Aymard C, Belarbi A. Kinetics of thermal deactivation of enzymes: a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism. Enzyme Microb Technol, 2000, 27: 612–618

    Article  CAS  Google Scholar 

  31. Villalonga R, Matos M, Cao R. Construction of an amperometric biosensor for xanthine via supramolecular associations Electrochem Commun, 2007, 9: 454–458

    Article  CAS  Google Scholar 

  32. Liu Y, Nie L, Tao W, Yao S. Amperometric study of Au-colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanalysis, 2004, 16: 1271–1278

    Article  Google Scholar 

  33. Shan D, Wang YN, Xue HG, Cosnier S, Ding SN. Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: Direct electron transfer and multielectrocatalysis. Biosens Bioelectron, 2009, 24: 3556–3561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HongLi Zhao or MinBo Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Y., Chen, C., Zhou, C. et al. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system. Sci. China Chem. 53, 2581–2586 (2010). https://doi.org/10.1007/s11426-010-4038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4038-4

Keywords

Navigation