Skip to main content
Log in

Environmentally benign chemical fixation of CO2 catalyzed by the functionalized ion-exchange resins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Basic ion-exchange resins, one kind of polystyryl-supported tertiary amine, were demonstrated to be highly efficient and recyclable catalysts for the fixation of carbon dioxide with aziridines under mild conditions, leading to the formation of 5-aryl-2-oxazolidinone with excellent regio-selectivities. Notably, neither solvents nor any additives were required, and the catalyst could be recovered by simple filtration and directly reused at least five times without significant loss of catalytic activity and selectivity. The present protocol has been applied to reactions of epoxides/propargyl amines with CO2/CS2. This solvent-free process thus represents environmentally friendly catalytic conversion of CO2 into value-added chemicals and may have potential in various continuous flow reactors in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson DH. The organometallic chemistry of carbon dioxide. Chem Rev, 1996, 96: 2063–2096

    Article  CAS  Google Scholar 

  2. Nakano K, Kamada T, Nozaki K. Selective formation of polycarbonate over cyclic carbonate: Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew Chem Int Ed, 2006, 45: 7274–7277

    Article  CAS  Google Scholar 

  3. Sakakura T, Choi JC, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  Google Scholar 

  4. Barbachyn MR, Ford CW. Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed, 2003, 42: 2010–2023

    Article  CAS  Google Scholar 

  5. Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem, 2003, 278: 21972–21979

    Article  CAS  Google Scholar 

  6. Hoellman DB, Lin G, Ednie LM, Rattan A, Jacobs MR, Appelbaum PC. Antipneumococcal and antistaphylococcal activities of ranbezolid (RBX 7644), a new oxazolidinone, compared to those of other agents. Antimicrob Agents Chemother, 2003, 47: 1148–1150

    Article  CAS  Google Scholar 

  7. Rubinstein E, Isturiz R, Standiford HC, Smith LG, Oliphant TH, Cammarata S, Hafkin B, Le V, Remington J. Worldwide assessment of linezolid’s clinical safety and tolerability: Comparator-controlled phase III studies. Antimicrob Agents Chemother, 2003, 47: 1824–1831

    Article  CAS  Google Scholar 

  8. Gawley RE, Campagna SA, Santiago M, Ren T. Lithiated camphorderived oxazolidinone S,N-acetals as chiral formyl anion synthons in additions to aldehydes. Asymmetric synthesis of α-hydroxy aldehydes and α-hydroxy acids. Tetrahedron: Asymmetry, 2002, 13: 29–36

    Article  CAS  Google Scholar 

  9. Makhtar TM, Wright GD. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev, 2005, 105: 529–542

    Article  CAS  Google Scholar 

  10. Andreou T, Costa AM, Esteban L, Gonzalez L, Mas G, Vilarrasa J. Synthesis of (−)-amphidinolide K fragment C9–C22. Org Lett, 2005, 7: 4083–4086

    Article  CAS  Google Scholar 

  11. Aurelio L, Brownlee RTC, Hughus AB. Synthetic preparation of N-methyl-α-amino acids. Chem Rev, 2004, 104: 5823–5846

    Article  CAS  Google Scholar 

  12. Shi ZD, Liu HP, Zhang MC, Yang DJ, Burke TR Jr. Synthesis of the first α-fluoro-phosphotyrosyl mimetic. Synth Commun, 2004, 34: 3883–3889

    Article  CAS  Google Scholar 

  13. Trost BM. Atom economy-a challenge for organic synthesis: Homogeneous catalysis leads the way. Angew Chem Int Ed, 1995, 34: 259–281

    Article  CAS  Google Scholar 

  14. Miller AW, Nguyen ST. (Salen)chromium(III)/DMAP: An efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines. Org Lett, 2004, 6: 2301–2304

    Article  CAS  Google Scholar 

  15. Shen YM, Duan WL, Shi M. Chemical fixation of carbon dioxide co-catalyzed by a combination of schiff bases or phenols and organic bases. Eur J Org Chem, 2004, 14: 3080–3089

    Article  CAS  Google Scholar 

  16. Kawanami H, Ikushima Y. Regioselectivity and selective enhancement of carbon dioxide fixation of 2-substituted aziridines to 2-oxazolidinones under supercritical conditions. Tetrahedron Lett, 2002, 43: 3841–3844

    Article  CAS  Google Scholar 

  17. Kawanami H, Matsumoto H, Ikushima Y. Effective scCO2-ionic liquid reaction system based on symmetric aliphatic ammonium salts for the rapid CO2 fixation with aziridine to 2-oxazolidinone. Chem Lett, 2005, 34: 60–61

    Article  CAS  Google Scholar 

  18. Hancock MT, Pinhas AR. A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett, 2003, 44: 5457–5460

    Article  CAS  Google Scholar 

  19. Sudo A, Morioka Y, Sanda F, Endo T. N-tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett, 2004, 45: 1363–1365

    Article  CAS  Google Scholar 

  20. Sudo A, Morioka Y, Koizumi E, Sanda F, Endo T. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridines under atmospheric pressure. Tetrahedron Lett, 2003, 44: 7889–7891

    Article  CAS  Google Scholar 

  21. Jiang HF, Ye JW, Qi CR, Huang LB. Naturally occurring α-amino acid: A simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett, 2010, 51: 928–932

    Article  CAS  Google Scholar 

  22. Du Y, Wu Y, Liu AH, He LN. Quaternary ammonium bromide functionalized polyethylene glycol: A highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones. J Org Chem, 2008, 73: 4709–4712

    Article  CAS  Google Scholar 

  23. Wu Y, He LN, Du Y, Wang JQ, Miao CX, Li W. Zirconyl chloride: an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron, 2009, 65: 6204–6210

    Article  CAS  Google Scholar 

  24. Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun, 2009, 11: 1312–1330

    Article  CAS  Google Scholar 

  25. Darensbourg DJ, Holtcamp MW. Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev, 1996, 153: 155–174

    Article  CAS  Google Scholar 

  26. Yin SF, Shimada S. Synthesis and structure of bismuth compounds bearing a sulfur-bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from CO2 and propylene oxide. Chem Commun, 2009, 9: 1136–1138

    Article  CAS  Google Scholar 

  27. Sun J, Ren JY, Zhang SJ, Cheng WG. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett, 2009, 50: 423–426

    Article  CAS  Google Scholar 

  28. Song JL, Zhang ZF, Han BX, Hu SQ, Li WJ, Xie Y. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of beta-cyclodextrin. Green Chem, 2008, 10: 1337–1341

    Article  CAS  Google Scholar 

  29. Jutz F, Grunwaldt JD, Baiker A. Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2. J Mol Cata A, 2008, 279: 94–103

    Article  CAS  Google Scholar 

  30. He JL, Wu TB, Zhang ZF, Ding KL, Han BX, Xie Y, Jiang T, Liu ZM. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts. Chem Eur J, 2007, 13: 6992–6997

    Article  CAS  Google Scholar 

  31. Man ML, Lam KC, Sit WN, Ng SM, Zhou ZY, Lin ZY, Lau CP. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes. Chem Eur J, 2006, 12: 1004–1015

    Article  CAS  Google Scholar 

  32. Shi M, Shen YM. Transition-metal-catalyzed reactions of propargylamine with carbon dioxide and carbon disulfide. J Org Chem, 2002, 67: 16–21

    Article  CAS  Google Scholar 

  33. Feroci M, Orsini M, Sotgiu G, Rossi L, Inesi A. Electrochemically promoted C-N bond formation from acetylenic amines and CO2. Synthesis of 5-methylene-1,3-oxazolidin-2-ones. J Org Chem, 2005, 70: 7795–7798

    Article  CAS  Google Scholar 

  34. Kayaki Y, Yamamoto M, Suzuki T, Ikariya T. Carboxylative cyclization of propargylamines with supercritical carbon dioxide. Green Chem, 2006, 8: 1019–1021

    Article  CAS  Google Scholar 

  35. Maggi R, Bertolotti C, Orlandini E, Oro O, Sartori G, Selva M. Synthesis of oxazolidinones in supercritical CO2 under heterogeneous catalysis. Tetrahedron Lett, 2007, 48: 2131–2134

    Article  CAS  Google Scholar 

  36. Yoshida M, Komatsuzaki Y, Ihara M. Synthesis of 5-vinylidene oxazolidin-2-ones by DBU-mediated CO2-fixation reaction of 4-(benzylamino)-2-butynyl carbonates and benzoates. Org Lett, 2008, 10: 2083–2086

    Article  CAS  Google Scholar 

  37. Yoshida S, Fukui K, Kikuchi S, Yamada T. Silver-catalyzed preparation of oxazolidinones from carbon dioxide and propargylic amines. Chem Lett, 2009, 38: 787–787

    Google Scholar 

  38. Shaikh A-AG, Sivaram S. Organic carbonates. Chem Rev, 1996, 96: 951–976

    Article  CAS  Google Scholar 

  39. Yoshida M, Ihara M. Novel methodologies for the synthesis of cyclic carbonates. Chem Eur J, 2004, 10: 2886–2893

    Article  CAS  Google Scholar 

  40. Chung CWY, Toy PH. Chiral auxiliaries in polymer-supported organic synthesis. Tetrahedron: Asymmetry, 2004, 15: 387–399

    Article  CAS  Google Scholar 

  41. Barbachyn MR, Hutchinson DK, Brickner SJ, Zurenko GE. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem, 1996, 39: 680–685

    Article  CAS  Google Scholar 

  42. Perez ER, Santos RA, Gambardella MP, de Macedo LM, Rodrigues-Filho UP, Launay JC, Franco DW. Activation of carbon dioxide by bicyclic amidines. J Org Chem, 2004, 69: 8005–8011

    Article  CAS  Google Scholar 

  43. Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL. The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem, 2005, 70: 5335–5338

    Article  CAS  Google Scholar 

  44. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL. Reversible nonpolar-to-polar solvent. Nature, 2005, 436: 1102

    Article  CAS  Google Scholar 

  45. North M, Pasquale R. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem Int Ed, 2009, 48: 2946–2948

    Article  CAS  Google Scholar 

  46. Paddock RL, Nguyen ST. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc, 2001, 123: 11498–11499

    Article  CAS  Google Scholar 

  47. Pérez ER, Franco DW. Efficient and clean synthesis of N-alkyl carbamates by transcarboxylation and O-alkylation coupled reactions using a DBU-CO2 zwitterionic carbamic complex in aprotic polar media. Tetrahedron Lett, 2002, 43: 4091–4093

    Article  Google Scholar 

  48. Mizuno T, Ishino Y. Highly efficient synthesis of 1H-quinazoline-2,4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58: 3155–3158

    Article  CAS  Google Scholar 

  49. Endo T, Nagai D. A novel construction of a reversible fixtion-release system of carbon dioxide by amidines and their polymers. Macromolecules, 2004, 37: 2007–2009

    Article  CAS  Google Scholar 

  50. Mizuno T, Iwai T, Ishino Y. The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett, 2004, 45: 7073–7075

    Article  CAS  Google Scholar 

  51. Luinstra GA, Haas R, Molnar F, Bernhart V, Eberhardt R, Rieger B. On the formation of aliphatic polycarbonates from epoxides with Chromium(III) and Aluminum(III) metal-salen complexes. Chem Eur J, 2005, 11: 6298–6314

    Article  CAS  Google Scholar 

  52. Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans, 2007, 28: 2975–2992

    Article  CAS  Google Scholar 

  53. Capriati V, Florio S, Luisi R, Musio B. Directed ortho lithiation of N-alkylphenylaziridines. Org Lett, 2005, 7: 3749–3752

    Article  CAS  Google Scholar 

  54. Molinaro C, Jamison F. Nickel-catalyzed reductive coupling of alkynes and epoxides. J Am Chem Soc, 2003, 125: 8076–8077

    Article  CAS  Google Scholar 

  55. Wu JY, Luo BZL, Dai LX, Hou XL. Tributylphosphine catalyzed cycloaddition of aziridines with carbon disulfide and isothiocyanate. J Org Chem, 2008, 73: 9137–9139

    Article  CAS  Google Scholar 

  56. Yavari I, Darjani GM, Hossaini Z, Sabbaghan M, Hosseini N. Methoxide ion promoted efficient synthesis of 1,3-oxathiolane-2-thiones by reaction of oxiranes and carbon disulfide. Synlett, 2008, 6: 889–891

    Article  CAS  Google Scholar 

  57. Maggi R, Malmassari C, Oro C, Pela R, Sartori G, Soldi L. Reaction between epoxides and carbon disulfide under hydrotalcite catalysis: eco compatible synthesis of cyclic dithiocarbonates. Synthesis, 2008, 1: 53–56

    Article  CAS  Google Scholar 

  58. Yavari I, Darjani GM, Hossaini Z, Sabbaghan M, Hosseini N. Methoxide ion promoted efficient synthesis of 1,3-oxathiolane-2-thiones by reaction of oxiranes and carbon disulfide. Synlett, 2008, 6: 889–891

    Article  CAS  Google Scholar 

  59. Shen YM, Shi M. Transition-metal-catalyzed reactions of 5-methylene-2-oxazolidinone and 5-methylene-1,3-thiazolidine-2-thione with isocyanates. Appl Organometallic Chem, 2003, 17: 767–775

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiangNian He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A., He, L., Peng, S. et al. Environmentally benign chemical fixation of CO2 catalyzed by the functionalized ion-exchange resins. Sci. China Chem. 53, 1578–1585 (2010). https://doi.org/10.1007/s11426-010-4028-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4028-6

Keywords

Navigation