Skip to main content
Log in

Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst. In the presence of 0.8 mol% of L-histidine at 130 °C under 8 MPa of CO2, the reaction of carbon dioxide with epoxides proceeded smoothly, affording corresponding cyclic carbonates in good to excellent yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckman EJ. Green chemical processing using CO2. Ind Eng Chem Res, 2003, 42: 1598–1602

    Article  CAS  Google Scholar 

  2. Shi M, Shen YM. Recent progresses on the fixation of carbon dioxide. Curr Org Chem, 2003, 7: 737–745

    Article  CAS  Google Scholar 

  3. Sakakura T, Choi JC, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  Google Scholar 

  4. Coates GW, Moore DR. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed, 2004, 43: 6618–6639

    Article  CAS  Google Scholar 

  5. Shaikh AAG, Sivaram S. Organic carbonates. Chem Rev, 1996, 96: 951–976

    Article  CAS  Google Scholar 

  6. Biggadike K, Angell RM, Burgess CM, Farrell RM, Hancock AP, Harker AndJ., Irving WR, Ioannou C, Procopiou PA, Shaw RE, Solanke YE, Singh OMP, Snowden MA, Stubbs RJ, Walton S, Weston HE. Selective plasma hydrolysis of glucocorticoid γ-lactones and cyclic carbonates by the enzyme paraoxanase: An ideal plasma inactivation mechanism. J Med Chem, 2000, 43: 19–21

    Article  CAS  Google Scholar 

  7. Xiaoding X, Moulijn JA. Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy & Fuels, 1996, 10: 305–325

    Article  CAS  Google Scholar 

  8. Lichtenwalter M, Cooper JF. Producing alkylene carbonates. U.S. Patent 2773070, 1956

  9. Paddock RL, Hiyama Y, Mckay JM, Nguyen ST. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett, 2004, 45: 2023–2026

    Article  CAS  Google Scholar 

  10. Paddock RL, Nguyen ST. Chemical CO2 fixation: Cr(III) Salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc, 2001, 123: 11498–11499

    Article  CAS  Google Scholar 

  11. Jing H, Edulji SK, Gibbs JM, Stern CL, Zhou HY, Nguyen ST. (Salen) Tin complexes: Syntheses, catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide. Inorg Chem, 2004, 43: 4315–4327

    Article  CAS  Google Scholar 

  12. Meléndez J, North M, Pasquale R. Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts. Eur J Inorg Chem, 2007, 3323–3326

  13. Ji D, Lu X, He R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl Catal A: Gen, 2000, 203: 329–333

    Article  CAS  Google Scholar 

  14. Li F, Xia C, Xu L, Sun W, Chen G. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem Commun, 2003, 2042–2043

  15. Shen YM, Duan WL, Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem, 2003, 68: 1559–1562

    Article  CAS  Google Scholar 

  16. Jiang JL, Gao F, Hua R, Qiu XJ. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. J Org Chem, 2005, 70: 381–383

    Article  CAS  Google Scholar 

  17. Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang RJ. Asymmetric catalysis with CO2: Direct synthesis of optically active propylene carbonate from racemic epoxides. J Am Chem Soc, 2004, 126: 3732–3733

    Article  CAS  Google Scholar 

  18. Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem Commun, 2003, 896–897

  19. Peng J, Deng Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem, 2001, 25: 639–641

    Article  CAS  Google Scholar 

  20. Kim YJ, Varma RS. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J Org Chem, 2005, 70: 7882–7891

    Article  CAS  Google Scholar 

  21. Caló V, Nacci A, Monopoli A, Fanizzi A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett, 2002, 4: 2561–2563

    Article  Google Scholar 

  22. Ako T, Fukai T, Sahashi R. Cycloaddition of oxirane group with carbon dioxide in the supercritical homogeneous state. Ind Eng Chem Res, 2002, 41: 5353–5358

    Article  Google Scholar 

  23. Song J, Zhang Z, Huan B, Hu S, Li W, Xie Y. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green Chem, 2008, 10: 1337–1341

    Article  CAS  Google Scholar 

  24. Yano T, Matsui H, Koike T, Ishigure H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commun, 1997, 1129–1130

  25. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc, 1999, 121: 4526–4527

    Article  CAS  Google Scholar 

  26. Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H. CO2 fixation using recoverable chromium salen catalysts: use of ionic liquids as cosolvent or high-surface-area silicates as supports. J Catal, 2004, 228: 252–258

    Article  Google Scholar 

  27. Alvaro M, Baleizao C, Carbonell E, Ghoul ME, García H, Gigante B. Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron, 2005, 61: 12131–12139

    Article  CAS  Google Scholar 

  28. Lu XB, Xiu JH, He R, Jin K, Luo LM, Feng XJ. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions: continuous and selective. Appl Catal, A: Gen, 2004, 275: 73–78

    Article  CAS  Google Scholar 

  29. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Synergistic hybrid catalyst for cyclic carbonate synthesis: Remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem Commun, 2006, 1664–1666

  30. Sakai T, Tsutsumi Y, Ema T. Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem, 2008, 10: 337–341

    Article  CAS  Google Scholar 

  31. Du Y, Wang JQ, Chen JY, Cai F, Tian JS, Kong DL, He LN. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett, 2006, 47: 1271–1275

    Article  CAS  Google Scholar 

  32. Du Y, Cai F, Kong DL, He LN. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem, 2005, 7: 518–523

    Article  CAS  Google Scholar 

  33. Shi F, Zhang Q, Ma Y, He Y, Deng Y. From CO oxidation to CO2 activation: An unexpected catalytic activity of polymer-supported nanogold. J Am Chem Soc, 2005, 127: 4182–4183

    Article  CAS  Google Scholar 

  34. Qi C, Jiang H, Wang Z, Zou B, Yang S. Naturally occurring α-amino acids catalyzed coupling of Carbon dioxide with epoxides to afford cyclic carbonates. Synlett, 2007, 255–258

  35. Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun, 2000, 2089–2090

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuanFeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, C., Jiang, H. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Sci. China Chem. 53, 1566–1570 (2010). https://doi.org/10.1007/s11426-010-4019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4019-7

Keywords

Navigation