Skip to main content
Log in

Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bimetallic Au/Pd nanoparticles were prepared and used to catalyze oxidation of alcohols in the poly(ethylene glycol) (PEG)/CO2 biphasic system using O2 as the oxidant without adding any base. The catalytic activity of Au/Pd bimetal with different mole ratios was studied using benzyl alcohol as the substrate. It was found that bimetallic Au/Pd nanoparticles with Au:Pd=1:3.5 had higher catalytic activity than monometallic Au, Pd and the bimetallic Au/Pd nanoparticles with other molar ratios. The effect of CO2 pressure on the oxidation of benzyl alcohol and 1-phenylethanol in PEG/CO2 was investigated. It was demonstrated that CO2 pressure could be used to tune the conversion and selectivity of the reactions effectively. α,β,-Unsaturated alcohols were also studied and found to be more reactive than benzyl alcohol and 1-phenylethanol. Recycling experiments showed that the Au/Pd/PEG/CO2 catalytic system could be recycled at least four times without reducing the activity. In addition, the catalytic system is clean and the products can be separated easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev, 2004, 104(6):3037–3058

    Article  CAS  Google Scholar 

  2. Schultz MJ, Sigman MS. Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron, 2006, 62(35):8227–8241

    Article  CAS  Google Scholar 

  3. Yang J, Guan YJ, Verhoeven T, van Santen R, Li C, Hensen EJM. Basic metal carbonate supported gold nanoparticles: Enhanced performance in aerobic alcohol oxidation. Green Chem, 2009, 11(3):322–325

    Article  CAS  Google Scholar 

  4. Wang T, Shou H, Kou Y, Liu HC. Base-free aqueous-phase oxidation of non-activated alcohols with molecular oxygen on soluble Pt nanoparticles. Green Chem, 2009, 11(4):562–568

    Article  CAS  Google Scholar 

  5. Karimi B, Zamani A, Abedia S, Clark JH. Aerobic oxidation of alcohols using various types of immobilized palladium catalyst: the synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chem, 2009, 11(1):109–119

    Article  CAS  Google Scholar 

  6. Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett, 1987, 16(2):405–408

    Article  Google Scholar 

  7. Haruta M, Yamada N, Kobayashi T, Lijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal, 1989, 115(2):301–309

    Article  CAS  Google Scholar 

  8. Park JY, Zhang YW, Grass M, Zhang TF, Somorjai GA. Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles. Nano letters, 2008, 8(2):673–677

    Article  CAS  Google Scholar 

  9. Chen MS, Kumar D, Yi CW, Goodman DW. The promotional effect of gold in catalysis by palladium-gold. Science, 2005, 310:291–293

    Article  CAS  Google Scholar 

  10. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun, 2002, (18):2058–2059

    Article  Google Scholar 

  11. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys, 2003, 5(9):1917–1923

    Article  CAS  Google Scholar 

  12. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. J Catal, 2005, 236(1):69–79

    Article  CAS  Google Scholar 

  13. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely JC, Knight DW, Hutchings GJ. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science, 2006, 311:362–365

    Article  CAS  Google Scholar 

  14. Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal, 2006, 244(1):113–121

    Article  CAS  Google Scholar 

  15. Hou W, Dehm NA, Scott RWJ. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J Catal, 2008, 253(1):22–27

    Article  CAS  Google Scholar 

  16. Hou ZS, Theyssen N, Brinkmann A, Leitner W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed, 2005, 44(9):1346–1349

    Article  CAS  Google Scholar 

  17. He JL, Wu TB, Jiang T, Zhou XS, Hu BJ, Han BX. Aerobic oxidation of secondary alcohols to ketones catalyzed by cobalt(II)/ZnO in poly(ethylene glycol)/CO2 system. Catal Commun, 2008, 9(13):2239–2243

    Article  CAS  Google Scholar 

  18. Wang JQ, He LN, Miao CX. Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide. Green Chem, 2009, 11(7):1013–1017

    Article  CAS  Google Scholar 

  19. Liu RX, Cheng HY, Wang Q, Wu CY, Ming J, Xi CY, Yu YC, Cai SX, Zhao FY, Arai M. Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chem, 2008, 10(10):1082–1086

    Article  CAS  Google Scholar 

  20. Yamaguchi K, Kim JW, He JL, Mizuno N. Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides. J Catal, 2009, 268(2):343–349

    Article  CAS  Google Scholar 

  21. Ma CY, Dou BJ, Li JJ, Cheng J, Hu Q, Hao ZP, Qiao SZ. Catalytic oxidation of benzyl alcohol on Au or Au-Pd nanoparticles confined in mesoporous silica. Appl Catal B, 2009, 92(1–2):202–208

    CAS  Google Scholar 

  22. Toshima N, Harada M, Yamazaki Y, Asakura K. Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J Phys Chem, 1992, 96(24):9927–9933

    Article  CAS  Google Scholar 

  23. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc, 2005, 127(26):9374–9375

    Article  CAS  Google Scholar 

  24. Scott RWJ, Wilson OM, Oh SK, Kenik EA, Crooks RM. Bimetallic palladium-gold dendrimer-encapsulated catalysts. J Am Chem Soc, 2004, 126(47):15583–15591

    Article  CAS  Google Scholar 

  25. Gourgouillon D, Ponte MN. High pressure phase equilibria for poly(ethylene glycol)s + CO2: Experimental results and modeling. Phys Chem Chem Phys, 1999, 1(23):5369–5375

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BuXing Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Wu, T., Hu, B. et al. Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system. Sci. China Chem. 53, 1592–1597 (2010). https://doi.org/10.1007/s11426-010-4014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4014-z

Keywords

Navigation