Skip to main content
Log in

Recognition behavior of chiral nanocomposites toward biomolecules and its application in electrochemical immunoassay

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The novel nanocomposites were obtained by covalently linking arginine enantiomers with the sidewall of multi-walled carbon nanotubes, and utilized as sensing materials for biomolecular recognition in electrochemical immunoassay. They were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and circular dichroism spectroscopy (CD). Nano-gold and Prussian Blue were employed to amplify the analytical signal responses. Prostate specific antibody/antigen and carcinoembryonic antibody/antigen were used as model systems. The results showed that the different configurations of nanocomposites could readily facilitate chiral recognition of antibodies, and D-nanocomposites displayed a larger signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang K, Gan H, Li Y, Chi L, Sun T, Fuchs H. Stereoselective interaction between DNA and chiral surfaces. J Am Chem Soc, 2008, 130: 11284–11285

    Article  CAS  Google Scholar 

  2. Sun T, Han D, Rhemann K, Chi L, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. J Am Chem Soc, 2007, 129: 1496–1497

    Article  CAS  Google Scholar 

  3. Hazen RM, Sholl DS. Chiral selection on inorganic crystalline surfaces. Nat Mater, 2003, 2: 367–374

    Article  CAS  Google Scholar 

  4. Stupp SI, LeBonheur V, Walker K., Li LS, Huggins KE, Keser M, Amstutz A. Supramolecular materials: Self-organized nanostructures. Science. 1997, 276: 384–389

    Article  CAS  Google Scholar 

  5. Cornelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM. Chiral architectures from macromolecular building blocks. Chem Rev, 2001, 101: 4039–4070

    Article  CAS  Google Scholar 

  6. Cui X, Fu YZ, Li MS, Chen M, He X, Liu XH, Feng XM. Application of L-thiazolidine-4-carboxylic acid monolayer in electrochemical determination of copper (II). Sci China Chem, 2010, 1: 257–262

    Article  Google Scholar 

  7. Izake EL. Chiral discrimination and enantioselective analysis of drugs: an overview. J Pharm Sci, 2007, 96:1659–1676

    Article  CAS  Google Scholar 

  8. Wang WH, Rusin O, Xu XY, Kim KK, Escobedo JO, Fakayode SO, Fletcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM. Detection of homocysteine and cysteine. J Am Chem Soc, 2005, 127: 15949–15958

    Article  CAS  Google Scholar 

  9. Leitner A, Lindner W. Functional probing of arginine residues in proteins using mass spectrometry and an arginine-specific covalent tagging concept. Anal Chem, 2005, 77: 4481–4488

    Article  CAS  Google Scholar 

  10. Schug KA, Lindner W. Noncovalent binding between guanidinium and anionic groups: Focus on biological- and synthetic-based arginine/guanidinium interactions with phosphate and sulfate residues. Chem Rev, 2005, 105: 67–113

    Article  CAS  Google Scholar 

  11. Caldwell J. Stereochemical determinants of the nature and consequences of drug metabolism. J Chromatogr, 1995, A694: 39–48

    Article  CAS  Google Scholar 

  12. Eichelbaum M, Cross AS. Stereochemical aspects of drug action and disposition. Adv Drug Res, 1996, 28: 1–64

    Article  CAS  Google Scholar 

  13. Nakamura H, Saheki T, Nakagawa S. Differential cellular localization of enzymes of L-arginine metabolism in the rat brain. Brain Res, 1990, 530: 108–112

    Article  CAS  Google Scholar 

  14. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. Agmatine is an endogenous clonidine-displacing substance in brain. Science, 1994, 263: 966–969

    Article  CAS  Google Scholar 

  15. Calver A, Collier J, Vallance P. Dilator actions of arginine in human peripheral vasculature. Clin Sci (Lond), 1991, 81: 695–700

    CAS  Google Scholar 

  16. Warsinke A, Benkert A, Scheller, Fresen FW. Electrochemical immunoassays. J Anal Chem, 2000, 366: 622–634

    Article  CAS  Google Scholar 

  17. Bilitewski U. Peer reviewed: Can affinity sensors be used to detect food contaminants. Anal Chem, 2000, 72:692A–701A

    Article  CAS  Google Scholar 

  18. Van Emon JM, Lopez-Avila V. Immunochemical methods for environmental analysis. Anal Chem, 1992, 64: 79A–88A

    Article  Google Scholar 

  19. Attard GA. Electrochemical studies of enantioselectivity at chiral metal surfaces. J Phy Chem B, 2001, 105:3158–3167

    Article  CAS  Google Scholar 

  20. Stefan RI, Van Staden JF, Aboul-Enein HY. Molecular recognition in chiral discrimination. Cryst Eng, 2001, 4: 113–118

    Article  CAS  Google Scholar 

  21. Zhang H, Li DQ, Shao GS, Yuan ZY. A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles. Sci China Ser B Chem, 2009, 9: 1498–1503

    Article  Google Scholar 

  22. Liu BL, Xiao HP, Song Y, You XZ. Two bimetallic W(IV)-Mn(II) complexes based on octacyanometallates: Structures and magnetic properties. Sci China Ser B Chem, 2009, 11: 1801–1807

    Article  Google Scholar 

  23. Ren YR, Qu MZ, Yu ZL. SiO/CNTs: A new anode composition for lithium-ion battery. Sci China Ser B Chem, 2009, 12: 2047–2050

    Article  Google Scholar 

  24. Heller A. Electrical wiring of redox enzymes. Acc Chem Res, 1990, 23: 128–134

    Article  CAS  Google Scholar 

  25. Moore RR, Banks CE, Compton RG. Basal plane pyrolytic graphite modified electrodes: Comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal Chem, 2004, 76: 2677–2682

    Article  CAS  Google Scholar 

  26. Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y. Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: Tunable electrode dimension and potential electrochemical applications. Anal Chem, 2004, 76: 6500–6505

    Article  CAS  Google Scholar 

  27. Martin E W, Kibbey W E, DiVecchia L, Anderson G, Catalano P, Minton JP. Carcinoembryonic antigen: Clinical and historical aspects. Cancer, 1976, 37: 62–81

    Article  Google Scholar 

  28. Guo ML, Chen JH, Nie LH, Yao SZ. Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride. Electrochim Acta, 2004, 49: 2637–2643

    Article  CAS  Google Scholar 

  29. Finot MO, Braybrook GD, Mcdermott MT. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J Electroanal Chem, 1999, 466: 234–241

    Article  CAS  Google Scholar 

  30. Zhuo Y, Yuan PX, Yuan R, Chai YQ, Hong CL. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials, 2008, 29: 1501–1508

    Article  CAS  Google Scholar 

  31. Zakharchuk NF, Meyer B, Henning H, Scholz F, Jaworksi A, Stojek Z. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue. J Electroanal Chem, 1995, 398: 23–35

    Article  Google Scholar 

  32. Lupu S, Mihailciuc C, Pigani L, Seeber R, Totir N, Zanardi C. Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer. Electrochem Commun, 2002, 4: 753–758

    Article  CAS  Google Scholar 

  33. Yu H, Sheng QL, Li L, Zheng JB. Rapid electrochemical preparation of a compact and thick Prussian Blue film on composite ceramic carbon electrode from single ferricyanide solution in the presence of HAuCl4. J Electroanal Chem, 2007, 606: 55–62

    Article  CAS  Google Scholar 

  34. Pyrasch M, Toutianoush A, Jin WQ, Schnepf J, Tieke B. Self-assembled films of Prussian Blue and analogues: Optical and electrochemical properties and application as ion-sieving membranes. Chem Mater, 2003, 15: 245–254

    Article  CAS  Google Scholar 

  35. Liu Y, Chu ZY, Jin WQ. A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochem Commun, 2009, 11: 484–487

    Article  CAS  Google Scholar 

  36. Booth TD, Wahnon D, Wainer IW. Is chiral recognition a three-point process? Chirality, 1997, 9: 96–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingZi Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Chen, M., Cui, X. et al. Recognition behavior of chiral nanocomposites toward biomolecules and its application in electrochemical immunoassay. Sci. China Chem. 53, 1453–1458 (2010). https://doi.org/10.1007/s11426-010-4011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4011-2

Keywords

Navigation