Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane


This paper reports the chitosan-mediated synthesis of porous hematite nanoparticles with FeCl3 as the precursor via a hydrothermal approach at 160 °C. A series of porous chitosan/iron oxide hybrid nanoparticles were obtained via changing the ratio of chitosan to FeCl3, FeCl3 concentration and pH value of the reaction solution, and producing porous iron oxide nanoparticles after calcination. The as-prepared samples were characterized by means of X-ray diffraction, transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared, and N2 sorption. The particle sizes of these metal oxides were less than 100 nm, and the pore sizes were in the range of 2–16 nm. It was demonstrated that chitosan played a key role in the formation of the porous structures. The resultant α-Fe2O3 nanoparticles were used as the support to immobilize Au or Pd nanoparticles, producing Au/α-Fe2O3 or Pd/α-Fe2O3 nanoparticles. The as-prepared α-Fe2O3 nanocatalyst exhibited high selectivity towards cyclohexanone and cyclohexanol for catalyzing cyclohexane oxidation with O2 at 150°C.

This is a preview of subscription content, access via your institution.


  1. 1

    Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science, 2008, 320: 1748–1752

    Article  CAS  Google Scholar 

  2. 2

    Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Green chemistry: science and politics of change. Science, 2002, 297: 807–810

    Article  CAS  Google Scholar 

  3. 3

    Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew Chem Int Ed, 2003, 42: 3604–3622

    Article  CAS  Google Scholar 

  4. 4

    Chen J, Xu LN, Li WY. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17: 582–585

    Article  CAS  Google Scholar 

  5. 5

    Wu ZC, Yu K, Zhang SD. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C, 2008, 112: 11307–11313

    Article  CAS  Google Scholar 

  6. 6

    Zeng SY, Tang KB, Li TW. Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J Phys Chem C, 2008, 112: 4836–4843

    Article  CAS  Google Scholar 

  7. 7

    Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL. Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv Funct Mater, 2006, 16: 2243–2251

    Article  CAS  Google Scholar 

  8. 8

    Wen XG, Wang SH, Ding Y, Wang ZL, Yang SH. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B, 2005, 109: 215–220

    Article  CAS  Google Scholar 

  9. 9

    Liu L, Kou HZ, Mo WL, Lin HJ, Wang YQ. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B, 2006, 110: 15218–15223

    Article  CAS  Google Scholar 

  10. 10

    Bang JH, Suslick KS. Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc, 2007, 129: 2242–2243

    Article  CAS  Google Scholar 

  11. 11

    Gou XL, Wang GX, Park J. Monodisperse hematite porous nanospheres: Synthesis, characterization, and applications for gas sensors. Nanotechnology, 2008, 19: 125606

    Article  CAS  Google Scholar 

  12. 12

    Sun Z, Yuan H, Liu ZM, Han BX, Zhang XR. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater, 2005, 17: 2993–2997

    Article  CAS  Google Scholar 

  13. 13

    Jiao F, Harrison A, Jumas J, Chadwick AV, Kockelmann W, Bruce PG. Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc, 2006, 128: 5468–5474

    Article  CAS  Google Scholar 

  14. 14

    Wang Y, Cao JL, Wang SR. Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J Phys Chem C, 2008, 112: 17804–17808

    Article  CAS  Google Scholar 

  15. 15

    Gou XL, Wang GX, Kong XY. Flutelike porous hematite nanorods and branched nanostructures: Synthesis, characterisation and application for gas-sensing. Chem Eur J, 2008, 14: 5996–6002

    Article  CAS  Google Scholar 

  16. 16

    Yu CC, Dong XP, Guo LM. Template-free preparation of mesoporous Fe2O3 and its application as absorbents. J Phys Chem C, 2008, 112: 13378–13382

    Article  CAS  Google Scholar 

  17. 17

    Ristic M, Music S. Formation of porous α-Fe2O3 microstructure by thermal decomposition of Fe(IO3)3. J Alloys Comp, 2006, 425: 384–389

    Article  CAS  Google Scholar 

  18. 18

    Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem Rev, 2007, 107: 2228–2269

    Article  CAS  Google Scholar 

  19. 19

    Ogawa K, Oka K, Yui T. X-ray study of chitosan-transition metal complexes. Chem Mater, 1993, 5: 726–728

    Article  CAS  Google Scholar 

  20. 20

    Quignard F, Choplin A, Domard A. Chitosan: A natural polymeric support of catalysts for the synthesis of fine chemicals. Langmuir, 2000, 16: 9106–9108

    Article  CAS  Google Scholar 

  21. 21

    Bengisu M, Yilmaz E. Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydr Polymer, 2002, 50: 165–175

    Article  CAS  Google Scholar 

  22. 22

    Wang XD, Zhang BQ, Liu XF, Lin JYS. Synthesis of b-oriented TS-1 films on chitosan-modified α-Al2O3 substrates. Adv Mater, 2006, 18: 3261–3265

    Article  CAS  Google Scholar 

  23. 23

    Tan WB, Zhang Y. Multifunctional quantum-dot-based magnetic chitosan nanotubes. Adv Mater, 2005, 17: 2375–2279

    Article  CAS  Google Scholar 

  24. 24

    Hall SR. Biomimetic synthesis of high-Tc, type-II superconductor nanowires. Adv Mater, 2006, 18: 487–490

    Article  CAS  Google Scholar 

  25. 25

    Cornell RM, Schwermann U. The iron oxide structure, properties, reactions, occurrence and uses. VCH: Weinheim, 1996

    Google Scholar 

  26. 26

    Chang XH, Chen DR, Jiao XL. Chitosan-based aerogels with high adsorption performance. J Phys Chem B, 2008, 112: 7721–7725

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to ZhiMin Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, C., Zhang, H., Sun, Z. et al. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane. Sci. China Chem. 53, 1502–1508 (2010).

Download citation


  • chitosan
  • mesoporous nanoparticles
  • α-Fe2O3
  • cyclohexane
  • oxidation