Skip to main content
Log in

Catalytic hydrogenation of aromatic nitro compounds by functionalized ionic liquids-stabilized nickel nanoparticles in aqueous phase: The influence of anions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (−NH2) functionalized ionic liquids: 1-(3-aminopropyl)-2,3-dimethylimidazolium bromide ([AMMIM][Br]) and 1-(3-aminopropyl)-2,3-dimethylimidazolium acetate ([AMMIM][AcO]). The Ni(0) particles are composed of smaller ones which assemble in a blackberry-like shape. The Ni nanoparticles stabilized with [AMMIM][AcO] are much larger than those stabilized with [AMMIM][Br], and the former unexpectedly give much higher activity in the selective hydrogenation of citral and nitrobenzene (NB) in aqueous phase. The Ni(0) nanocatalysts dispersed in aqueous phase are stable enough to be reused at least five times without significant loss of catalytic activity and selectivity during the catalytic recycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dupont J, Souza de RF, Suarez PAZ. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev, 2002, 102: 3667–3692

    Article  CAS  Google Scholar 

  2. Muzart J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv Synth Catal, 2006, 348: 275–295

    Article  CAS  Google Scholar 

  3. Boon JA, Levisky JA, Pflug JL, Wilkes JS. Friedel-Crafts reactions in ambient-temperature molten salts. J Org Chem, 1986, 51: 480–483

    Article  CAS  Google Scholar 

  4. Rantwijk van F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev, 2007, 107: 2757–2785

    Article  CAS  Google Scholar 

  5. Scheeren CW, Machado G, Teixeira SR, Morais J, Domingos JB, Dupont J. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J Phys Chem B, 2006, 110: 13011–13020

    Article  CAS  Google Scholar 

  6. Dupont J, Fonseca GS, Umpierra AP, Fichtner PFP. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc, 2002, 124: 4228–4229

    Article  CAS  Google Scholar 

  7. Fonseca GS, Umpierre AP, Fichtner PFP. The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: Efficient catalysts for the hydrogenation of arenes. Chem Eur J, 2003, 9: 3263–3269

    Article  CAS  Google Scholar 

  8. Silveira ET, Umpierre AP, Rossi LM, Machado G, Morais J, Soares GV, Baumvol ILR, Teixeira SR, Fichtner PFP, Dupont J. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem Eur J, 2004, 10: 3734–3740

    Article  CAS  Google Scholar 

  9. Zhu YJ, Wang WW, Qi RJ, Hu XL. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed, 2004, 43: 1410–1414

    Article  CAS  Google Scholar 

  10. Endres F, Bukowski M, Hempelmann R, Natter H. Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew Chem Int Ed, 2003, 42: 3428–3430

    Article  CAS  Google Scholar 

  11. Bhatt AI, Mechler A, Martin LL, Bond AM. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J Mater Chem, 2007, 17: 2241–2250

    Article  CAS  Google Scholar 

  12. Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem, 2003, 42: 4738–4742

    Article  CAS  Google Scholar 

  13. Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc, 2004, 126: 3026–3027

    Article  CAS  Google Scholar 

  14. Umpierre AP, Machado G, Fecher GH, Morais J, Dupont J. Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv Synth Catal, 2005, 347: 1404–1412

    Article  CAS  Google Scholar 

  15. Šebesta R, Kmentová I, Toma S. Catalysts with ionic tag and their use in ionic liquids. Green Chem, 2008, 10: 484–496

    Article  CAS  Google Scholar 

  16. Hu Y, Yu YY, Hou ZS, Li H, Zhao XG, Feng B. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv Synth Catal, 2008, 350: 2077–2085

    Article  CAS  Google Scholar 

  17. Hu Y, Yang HM, Zhang YC, Hou ZS, Wang XR, Qiao YX, Li H, Feng B, Huang QF. The functionalized ionic liquid-stabilized palladium nanoparticles catalyzed selective hydrogenation in ionic liquid. Catal Commun, 2009, 10: 1903–1907

    Article  CAS  Google Scholar 

  18. Downing RS, Kunkeler PJ, Bekkum van H. Catalytic syntheses of aromatic amines. Catal Today, 1997, 37: 121–136

    Article  CAS  Google Scholar 

  19. Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes. Appl Catal A, 2002, 235: 225–231

    Article  CAS  Google Scholar 

  20. Cárdenas-Lizana F, Gómez-Quero S, Hugon A, Delannoy L, Louis C, Keane M A. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal, 2009, 262: 235–244

    Article  CAS  Google Scholar 

  21. Han XX, Chen Q, Zhou RX. Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu. J Mol Catal A, 2007, 277: 210–214

    Article  CAS  Google Scholar 

  22. Nieto-Márquez A, Gil S, Romero A, Valverde JL, Gómez-Quero S, Keane MA. Gas phase hydrogenation of nitrobenzene over acid treated structured and amorphous carbon supported Ni catalysts. Appl Catal A, 2009, 363: 188–198

    Article  CAS  Google Scholar 

  23. Cárdenas-Lizana F, Gómez-Quero S, Keane MA. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts. Appl Catal A, 2008, 334: 199–206

    Article  CAS  Google Scholar 

  24. Wang C, Qiu J, Liang C, Xing L, Yang X. Carbon nanofiber supported Ni catalysts for the hydrogenation of chloronitrobenzenes. Catal Commun, 2008, 9: 1749–1753

    Article  CAS  Google Scholar 

  25. Li H, Lin H, Xie S, Dai W, Qiao M, Lu Y, Li H. Ordered mesoporous Ni nanowires with enhanced hydrogenation activity prepared by electroless plating on functionalized SBA-15. Chem Mater, 2008, 20: 3936–3943

    Article  CAS  Google Scholar 

  26. Li H, Zhao Q, Wan Y, Dai W, Qiao M. Self-assembly of mesoporous Ni-B amorphous alloy catalysts. J Catal, 2006, 244: 251–254

    Article  CAS  Google Scholar 

  27. Du Y, Chen H, Chen R, Xu N. Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl Catal A, 2004, 277: 259–264

    Article  CAS  Google Scholar 

  28. Meng XC, Cheng HY, Akiyama Y, Hao YF, Qiao WB, Yu YC, Zhao FY, Fujita S, Arai M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. J Catal, 2009, 264: 1–10

    Article  CAS  Google Scholar 

  29. Xu DQ, Hu ZY, Li WW, Luo SP, Xu ZY. Hydrogenation in ionic liquids: an alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J Mol Catal A, 2005, 235: 137–142

    Article  CAS  Google Scholar 

  30. Cornils B. Exciting results from the field of homogeneous two-phase catalysis. Angew Chem Int Ed, 1995, 34: 1575–1577

    Article  CAS  Google Scholar 

  31. Dwars T, Paetzold E, Oehme G. Reactions in micellar systems. Angew Chem Int Ed, 2005, 44: 7174–7199

    Article  CAS  Google Scholar 

  32. Li CJ. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem Rev, 2005, 105: 3095–3166

    Article  CAS  Google Scholar 

  33. Kim KS, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir, 2004, 20: 556–560

    Article  CAS  Google Scholar 

  34. Schrekker HS, Gelesky MA, Stracke MP, Schrekker CML, Machado G, Teixeira SR, Rubim JC, Dupont J. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles. J Colloid Interface Sci, 2007, 316: 189–195

    Article  CAS  Google Scholar 

  35. Zhang SM, Li J, Zhang CL, Wu ZS, Zhang ZJ. Preparation and structural characterization of carboxyl-functional ionic liquid modified Pd nanoparticles. Chin J Inorg Chem, 2007, 23: 729–732

    CAS  Google Scholar 

  36. Zhang H, Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir, 2009, 25: 2604–2612

    Article  CAS  Google Scholar 

  37. Wang Z J, Zhang Q X, Kuehner D, Ivaska A, Niu L. Green synthesis of 1–2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction. Green Chem, 2008, 10: 907–909

    Article  CAS  Google Scholar 

  38. Dai C, Zhang SM, Li J, Wu ZS, Zhang Z. Preparation and structure characterization of Pd nanoparticles in hydroxyl-functionalized ionic liquids. Chin J Inorg Chem, 2007, 23: 1653–1656

    CAS  Google Scholar 

  39. Hu Y, Yu YY, Hou ZS, Yang HM, Feng B, Li H, Qiao YX, Wang XR, Hua L, Pan ZY, Zhao XG. Chem Asian J, 2010, 5: 1178–1184

    CAS  Google Scholar 

  40. Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM. Synthesis of nickel nanoparticles. influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater, 1999, 11: 526–529

    CAS  Google Scholar 

  41. Zhao ZF, Wu ZJ, Zhou LX, Zhang MH, Li W, Tao KY. Synthesis of a nano-nickel catalyst modified by ruthenium for hydrogenation and hydrodechlorination. Catal Commun, 2008, 9: 2191–2194

    Article  CAS  Google Scholar 

  42. Couto GG, Klein JJ, Schreiner WH, Mosca DH, Oliveira AJA, Zarbin AJG. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties. J Colloid Interface Sci, 2007, 311: 461–468

    Article  CAS  Google Scholar 

  43. Winnischofer H, Rocha TCR, Nunes WC, Socolovsky LM, Knobel M, Zanchet D. Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACS NANO, 2008, 2: 1313–1319

    Article  CAS  Google Scholar 

  44. Chen RZ, Wang QQ, Du Y, Xing WH, Xu NP. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J, 2009, 145: 371–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HanMing Yang or ZhenShan Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Yu, Y., Zhao, X. et al. Catalytic hydrogenation of aromatic nitro compounds by functionalized ionic liquids-stabilized nickel nanoparticles in aqueous phase: The influence of anions. Sci. China Chem. 53, 1541–1548 (2010). https://doi.org/10.1007/s11426-010-4003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4003-2

Keywords

Navigation