Skip to main content
Log in

Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

FDU-15-SO3H, a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer, has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture. FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading. It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1. FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid, which simulated the feedstock with a high content of free fatty acids. The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid. This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. China declares ambitious alternative-energy plans. Nature, 2008, 452: 399

  2. Tyson KS. Biodiesel Handling and Use Guidelines, 4th ed., NREL, 2009

  3. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre SBd, Keasling JD. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463: 559–562

    Article  CAS  Google Scholar 

  4. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ. Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A Gen, 2004, 257: 213–223

    Article  CAS  Google Scholar 

  5. Corma A, Iborra S, Miquel S, Primo J. Catalysts for the production of fine chemicals: Production of food emulsifiers, monoglycerides, by glycerolysis of fats with solid base catalysts. J Catal, 1998, 173: 315–321

    Article  CAS  Google Scholar 

  6. Xie W, Huang X, Li H. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour Technol, 2007, 98: 936–939

    Article  CAS  Google Scholar 

  7. Kim HJ, Kang BS. Kim MJ, Park YM, Kim DK, Lee JS, Lee KY. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today, 2004, 93–95: 315–320

    Article  CAS  Google Scholar 

  8. Ebiura T, Echizen T, Ishikawa A, Murai K, Baba T. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Appl Catal A Gen, 2005, 283: 111–116

    Article  CAS  Google Scholar 

  9. Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy, 2009, 34: 1145–1150

    Article  CAS  Google Scholar 

  10. Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K. Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chem Eng J, 2009, 145: 468–474

    Article  CAS  Google Scholar 

  11. Kitakawa NS, Honda H, Kuribayashi H, Toda T, Fukumura T, Yonemoto T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour Technol, 2007, 98: 416–421

    Article  CAS  Google Scholar 

  12. Serio MD, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E. Synthesis of biodiesel via homogeneous Lewis acid catalyst. J Mol Catal A Chem, 2005, 239: 111–115

    Article  CAS  Google Scholar 

  13. Serio MD, Apicella B, Grieco G, Iengo P, Fiocca L, Po R, Santacesaria E. Kinetic and catalytic aspects of dimethylterephtalate transesterification also through the use of model molecules. J Mol Catal A Chem, 1998, 130: 233–240

    Article  Google Scholar 

  14. Basu HN, Norris ME. US Patent, 5525126. 1996-06-11

  15. Liu KS. Preparation of fatty acid methyl esters for gaschromatographic analysis of lipids in biological materials. J Am Oil Soc Chem, 1994, 71: 1179–1187

    Article  CAS  Google Scholar 

  16. Barbosa SL, Dabdoub MJ, Hurtado GR, Klein SI, Baroni ACM, Cunha C. Solvent free esterification reactions using Lewis acids in solid phase catalysis. Appl Catal A Gen, 2006, 313: 146–150

    Article  CAS  Google Scholar 

  17. Shu Q, Yang B, Yuan H, Qing S, Zhu G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun, 2007, 8: 2159–2165

    Article  CAS  Google Scholar 

  18. Nakagaki S, Bail A, Santos VCd, Souza VHRd, Vrubel H, Nunes FS, Ramos LP. Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis. Appl Catal A Gen, 2008, 351: 267–274

    Article  CAS  Google Scholar 

  19. Ghesti GF, Macedo JLd, Parente VCI, Dias JA, Dias SCL. Synthesis, characterization and reactivity of Lewis acid/surfactant cerium trisdodecylsulfate catalyst for transesterification and esterification reactions. Appl Catal A Gen, 2008, 355: 139–147

    Article  CAS  Google Scholar 

  20. Furuta S, Matsuhashi H, Arata K. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun, 2004, 5: 721–723

    Article  CAS  Google Scholar 

  21. Jacobson K, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ, 2008, 85: 86–91

    Article  CAS  Google Scholar 

  22. Yang QH, Liu J, Yang J, Kapoor MP, Inagaki S, Li C. Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. J Catal, 2004, 228: 265–272

    Article  CAS  Google Scholar 

  23. Dhainaut J, Dacquin JP, Lee AF, Wilson K. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chem, 2010, 12: 296–303

    Article  CAS  Google Scholar 

  24. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M. Green chemistry: Biodiesel made with sugar catalyst. Nature, 2005, 438: 178

    Article  CAS  Google Scholar 

  25. Zong MH, Duan ZQ, Lou WY, Smith TJ, Wu H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem, 2007, 9: 434–437

    Article  CAS  Google Scholar 

  26. Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater, 2006, 18: 3039–3045

    Article  CAS  Google Scholar 

  27. Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M. Esterification of higher fatty acids by a novel strong solid acid. Catal Today, 2006, 116: 157–161

    Article  CAS  Google Scholar 

  28. Izci A, Bodur F. Liquid-phase esterification of acetic acid with isobutanol catalyzed by ion-exchange resins. React Funct Polym, 2007, 67: 1458–1464

    Article  CAS  Google Scholar 

  29. López DE, Goodwin JrJG, Bruce DA. Transesterification of triacetin with methanol on Nafion® acid resins. J Catal, 2007, 245: 381–391

    Article  CAS  Google Scholar 

  30. Han MH, Yi WL, Wu Q, Liu Y, Hong YC, Wang DZ. Preparation of biodiesel from waste oils catalyzed by a Brønsted acidic ionic liquid. Bioresour Technol, 2008, 100: 2308–2310

    Article  CAS  Google Scholar 

  31. Liang XZ, Yang JG. Synthesis of a novel multi -SO3H functionalized ionic liquid and its catalytic activities for biodiesel synthesis. Green Chem, 2010, 12: 201–204

    Article  CAS  Google Scholar 

  32. Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed, 2005, 44: 7053–7059

    Article  CAS  Google Scholar 

  33. Zhang FQ, Meng Y, Gu D, Yan Y, Yu CZ, Tu B, Zhao DY. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Iaıd bicontinuous cubic structure. J Am Chem Soc, 2005, 127: 13508–13509

    Article  CAS  Google Scholar 

  34. Xing R, Liu N, Liu YM, Wu HH, Jiang YW, Chen L, He MY, Wu P. Novel solid acid catalysts: Sulfonic acid group-functionalized mesostructured polymers. Adv Funct Mater, 2007, 17: 2455–2461

    Article  CAS  Google Scholar 

  35. Jones CW, Tsuji K, Davis ME. Organic-functionalized molecular sieves as shape-selective catalysts. Nature, 1998, 393: 52–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiHong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, L., Xing, R., Wu, H. et al. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Sci. China Chem. 53, 1481–1486 (2010). https://doi.org/10.1007/s11426-010-3206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3206-x

Keywords

Navigation