Skip to main content
Log in

A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied. It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte. The energy conversion efficiency of DSSC increased from 4.429% to 6.535%, with 47.55% enhancement. Therefore, it is a highly efficient electric additive for DSSC. The intrinsic reason is owing to the special molecular structure of N-CPI, which contains two different polarity groups. As a surfactant, N-CPI could form ordered arrangement in liquid electrolyte, which affects the diffusing ability and the redox reaction of I/I 3 , and further affects the photovoltaic performance of DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagffeldt A, Gratezel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68

    Article  Google Scholar 

  2. Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future. Sol Energy Mater Sol Cells, 2002, 74: 1–11

    Article  CAS  Google Scholar 

  3. Green MA. Recent developments in photovoltaics. Sol Energy, 2004, 76: 3–8

    Article  CAS  Google Scholar 

  4. Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cell. J Photoch Photobio A: Chem, 2004, 164: 3–14

    Article  CAS  Google Scholar 

  5. Barbe CJ, Arendse F, Comte P, Gratzel M. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc, 1997, 80: 3157–3171

    CAS  Google Scholar 

  6. Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals: impro efficiency of meso porous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem Mater, 2002, 14: 2930–2935

    Article  CAS  Google Scholar 

  7. Wang ZS, Huang CH, Huang YY, Hou YJ, Xie PH, Zhang BW, Cheng HM. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem Mater, 2001, 13: 678–682

    Article  CAS  Google Scholar 

  8. Nazeetuddin MK, M. Gratzel M. Conversion of light to electricity by cis-X2 bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) chargetransfer sensitizers (X = Cl, Br, I, CN and SCN) on nano crystalline titanium dioxide electrodes. J Am Chem Soc, 1993, 115: 6382–6390

    Article  Google Scholar 

  9. Tamotsu H, Hidetoshi M, Kouichi S, Satoshi U. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc, 2004, 126: 12218–12219

    Article  Google Scholar 

  10. O’Regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  11. Sapp SA, Elliott C, Contado C. Substituted polypyridine complexes of Cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc, 2004, 124: 11215–11222

    Article  Google Scholar 

  12. Nusbaumer H, Moser JE, Zakeeruddin SM. CoII (dbbip) 2+2 complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cell. J Phys Chem B, 2001, 105: 10461–10464

    Article  CAS  Google Scholar 

  13. Wang P, Zakeeruddin SM, Moser JE, Baker RH, Gratzel M. A solvent-free, SeCN/(SeCN) 3 based ionic liquid electrolyte for highefficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc, 2004, 126: 7164–7165

    Article  CAS  Google Scholar 

  14. Kusama H, Arakawa H. Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance. Sol Energy Mater Sol Cells, 2004, 81: 87–99

    Article  CAS  Google Scholar 

  15. Kusama H, Kurashige M, Arakawa H. Influence of nitrogen-containing heterocyclic additives in I/I 3 redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell. J Photoch Photobio A: Chem, 2005, 169: 169–176

    Article  CAS  Google Scholar 

  16. Boschloo G, Haggman L, Hagfeldt A. Quantification of the effect of 4-tert-butylpyridine addition to I/I 3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B, 2006, 110: 110: 13144–13150

    Article  CAS  Google Scholar 

  17. Wu JH, Lan Z, Lin JM, Huang ML, Li PJ. Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. J Power Sources, 2007, 173: 585–591

    Article  CAS  Google Scholar 

  18. Kambe S, Nakade S, Kitamura T, Wada Y, Yanagida S. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. J Phys Chem B, 2002, 106: 2967–2972

    Article  CAS  Google Scholar 

  19. Wu JH, Lan Z, Wang DB, Hao SC, Lin JM, Huang YF, Yin S, Tsugio S. Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochim Acta, 2006, 51: 4243–4249

    Article  CAS  Google Scholar 

  20. Popov AI, Geske DH. Studies on the chemistry of halogen and of polyhalides. XIII. Voltammetry of iodine species in acetonitrile. J Am Chem Soc, 1958, 80: 1340–1352

    Article  CAS  Google Scholar 

  21. Wei TC, Wan CC, Wang YY, Chen CM, Shiu HS. Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass and its application in dye-sensitized solar cells. J Phys Chem C, 2007, 111: 4847–4853

    Article  CAS  Google Scholar 

  22. Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta, 2001, 46: 3457–3466

    Article  CAS  Google Scholar 

  23. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasisolid-state dye-sensitized solar cells. J Am Chem Soc, 2003, 125: 1166–1167

    Article  CAS  Google Scholar 

  24. Kalyanasundaram K, Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev, 1998, 177: 347–414

    Article  CAS  Google Scholar 

  25. Murakami TN, Gratzel M. Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta, 2008, 361: 572–580

    Article  CAS  Google Scholar 

  26. Zhang ZP, Zakeeruddin SM, O’Regan BC, Baker RH, Gratzel M. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J Phys Chem B, 2005, 109: 21818–21824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Lan or JiHuai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Z., Wu, J., Lin, J. et al. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells. Sci. China Chem. 53, 1352–1357 (2010). https://doi.org/10.1007/s11426-010-3204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3204-z

Keywords

Navigation