Skip to main content
Log in

A cross-association model for CO2-methanol and CO2-ethanol mixtures

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A cross-association model was proposed for CO2-alcohol mixtures based on the statistical associating fluid theory (SAFT). CO2 was treated as a pseudo-associating molecule and both the self-association between alcohol hydroxyls and the cross-association between CO2 and alcohol hydroxyls were considered. The equilibrium properties from low temperature-pressure to high temperature-pressure were investigated using this model. The calculated p-x and p-ρ diagrams of CO2-methanol and CO2-ethanol mixtures agreed with the experimental data. The results showed that when the cross-association was taken into account for Helmholtz free energy, the calculated equilibrium properties could be significantly improved, and the error prediction of the three phase equilibria and triple points in low temperature regions could be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang T, Han BX. Chemical thermodynamics of supercritical fluids (in Chinese). Prog Chem, 2006, 18: 657–669

    CAS  Google Scholar 

  2. Joung SN, Yoo CW, Shin HY, Kim SY, Yoo KP, Lee CS, Huh WS. Measurements and correlation of high-pressure VLE of binary CO2-alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol). Fluid Phase Equilib, 2001, 185: 219–230

    Article  CAS  Google Scholar 

  3. Chang CMJ, Chiu KL, Day CY. A new apparatus for the determination of P-x-y diagrams and Henry’s constants in high pressure alcohols with critical carbon dioxide. J Supercritical Fluids, 1998}, 12}: 223–

    Article  Google Scholar 

  4. Zhu HG, Tian YL, Chen L, Feng JJ, Fu GF. Studies on vapor-liquid phase equilibria for SCF CO2 + CH3OH and SCF CO2 + C2H5OH systems (in Chinese). Chem Res Chin Univ, 2002, 23: 1588–1591

    CAS  Google Scholar 

  5. Tian YL, Han M, Feng JJ, Qin Y. Study on vapor-liquid phase equilibria for CO2-C2H5OH system (in Chinese). Acta Phys Chim Sinica, 2001, 17: 155–160

    CAS  Google Scholar 

  6. Secuianu C, Feroiu V, Geana D. Phase behavior for carbon dioxideethanol system: Experimental measurements and modeling with a cubic equation of state. J Supercritical Fluids, 2008, 47: 109–116

    Article  CAS  Google Scholar 

  7. Galicia-Luna LA, Ortega-Rodriguez A, Richon D. New apparatus for the fast determination of high-pressure vapor-liquid equilibrium of mixtures and of accurate critical pressures. J Chem Eng Data, 2000, 45: 265–271

    Article  CAS  Google Scholar 

  8. MendozadelaCruz JL, Galicia-Luna L. A High pressure vapor-liquid equilibrium for the carbon dioxide-ethanol and carbon dioxide-1-propanol systems at temperatures from 322.36 K to 391.96 K. ELDATA: Int Electron J Phys Chem Data, 1999, 5: 157–164

    Google Scholar 

  9. Lopez JA, Trejos VM, Cardona CA. Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n-alkanols. Fluid Phase Equilib, 2008, 275: 1–7

    Article  Google Scholar 

  10. Polishuk I, Wisniak J, Segura H. Simultaneous prediction of the critical and sub-critical phase behavior in mixtures using equation of state I carbon dioxide-alkanols. Chem Eng Sci, 2001, 56: 6485–6510

    Article  CAS  Google Scholar 

  11. Wang WL, Zhang XD, Liu XW, Xia YJ, Li ZY. Phase equilibria calculation for supercritical carbon dioxide and alcohol (in Chinese). J Chem Ind Eng, 2003, 24: 1–4

    Google Scholar 

  12. Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT equation of state solution model for associating fluids. Fluid Phase Equilib, 1989, 52: 31–38

    Article  CAS  Google Scholar 

  13. Huang SH, Radosz M. Equation of state for small, large, polydisperse, and associating molecules. Ind Eng Chem Res, 1990, 2: 2284–2294

    Article  Google Scholar 

  14. Chen J, Mi JG, Yu YM. An analytical equation of state for water and alkanols. Chem Eng Sci, 2004, 59: 5831–5838

    Article  CAS  Google Scholar 

  15. Mi JG, Zhong CL, Li YG. Renormalization group theory for fluids including critical region I pure fluids. Chem Phys, 2004, 305: 37–45

    Article  CAS  Google Scholar 

  16. Mi JG, Tang YP, Zhong CL. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory. J Phys Chem B, 2005, 109: 20546–20553

    Article  CAS  Google Scholar 

  17. Mi JG, Zhong CL, Li YG. An improved renormalization group theory for real fluids. J Chem Phys, 2004, 121: 5372–5380

    Article  CAS  Google Scholar 

  18. Mi JG, Zhong CL, Li YG. Renormalization group theory for fluids including critical region II binary mixtures. Chem Phys, 2005, 312: 31–38

    Article  CAS  Google Scholar 

  19. Li XS, Wu HJ, Li YG. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT. J Chem Thermo, 2007, 39: 417–425

    Article  CAS  Google Scholar 

  20. Li XS, Englezos P. Vapor-liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT. Fluid Phase Equilib, 2004, 224: 111–118

    Article  CAS  Google Scholar 

  21. Li XS, Wu HJ, Englezos P. Prediction of gas hydrate formation conditions in the presence of methanol, glycerol, ethylene glycol, and triethylene glycol with the statistical associating fluid theory equation of state. Ind Eng Chem Res, 2006, 45: 2131–2137

    Article  CAS  Google Scholar 

  22. Li XS, Wu HJ, Feng ZP, Tang LG, Pang SS. Prediction of equilibrium hydrate formation conditions for gas mixtures using the statistical associating fluid theory equation of state (in Chinese). Acta Chim Sinica, 2007, 1: 59–66

    Article  Google Scholar 

  23. Xu B, Li HR, Wang CM. Correlation of H-1 NMR chemical shift for aqueous solutions by statistical associating fluid theory association model. Chin J Chem Eng, 2005,13: 280–284

    CAS  Google Scholar 

  24. Fu D, Lu JF, Bao TZ, Li YG. Investigation of surface tension and interfacial tension in surfactant solutions by SAFT. Ind Eng Chem Res, 2000, 39: 320–327

    Article  CAS  Google Scholar 

  25. Fu D, Lu JF, Liu JC, Li YG. Prediction of surface tension for pure non-polar fluids based on density functional theory. Chem Eng Sci, 2001, 56: 6989–6996

    Article  CAS  Google Scholar 

  26. Lu JF, Fu D, Liu JC, Li YG. Application of density functional theory for predicting the surface tension of pure polar and associating fluids. Fluid Phase Equilib, 2002, 194-197: 755–769

    Article  CAS  Google Scholar 

  27. Fu D, Li YG. Investigation of the phase equilibria for non-polar chainlike fluids by Yukawa potential and renormalization-group theory. Ind Eng Chem Res, 2004, 43: 2271–2279

    Article  CAS  Google Scholar 

  28. Fu D, Zhao Y, Li YG. Investigation of the phase equilibria for pure associating fluids by Yukawa potential and renormalization group theory. Ind Eng Chem Res, 2004, 43: 5425–5429

    Article  CAS  Google Scholar 

  29. Fu D. Study on vapor-liquid equilibria and surface tensions for nonpolar fluids by renormalization group theory and density gradient theory. J Phys Chem B, 2006, 110: 19575–19581

    Article  CAS  Google Scholar 

  30. Button JK, Gubbins KE. SAFT prediction of vapour liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanol amine or diethanol amine. Fluid Phase Equilib, 1999, 158–160: 175–181

    Article  Google Scholar 

  31. Valtz A, Chapoy A, Coquelet C, Paricaud P, Richon D. Vapour-liquid equilibria in the carbon dioxide-water system, measurement and modelling from 278.2 to 318.2 K. Fluid Phase Equilib, 2004, 226: 333–344

    Article  CAS  Google Scholar 

  32. Ji XY, Tan SP, Adidharma H, Radosz M. SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems. Ind Eng Chem Res, 2005, 44: 8419–8427

    Article  CAS  Google Scholar 

  33. Li ZD, Firoozabadi A. Cubic-plus-association equation of state for water-containing mixtures: Is “cross association” necessary? AIChE J, 2009, 55: 1803–1813

    Article  CAS  Google Scholar 

  34. Cotterman RL, Schwarz BJ, Prausnitz JM. Molecular thermodynamics for fluids at low and high densities, part (I) Pure fluids containing small and large molecules. AIChE J, 1986, 32: 1787–1798

    Article  CAS  Google Scholar 

  35. Segura CJ, Chapman WG, Shukla KP. Associating fluids with four bonding sites against a hard wall: density functional theory. Mol Phys, 1997, 90: 759–771

    Article  CAS  Google Scholar 

  36. Yu YX, Wu JZ. A Fundamental-measure theory for inhomogeneous associating fluids. J Chem Phys, 2002, 116: 7094–7103

    Article  CAS  Google Scholar 

  37. Fu D, Li XS. Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores. J Chem Phys, 2006, 125: 084716

    Article  Google Scholar 

  38. Beaton CF, Hewitt GF. Physical Property Data for the Design Engineer. New York: Hemisphere, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, D., Yang, Z., Lu, J. et al. A cross-association model for CO2-methanol and CO2-ethanol mixtures. Sci. China Chem. 53, 1438–1444 (2010). https://doi.org/10.1007/s11426-010-3202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3202-1

Keywords

Navigation