Skip to main content
Log in

Crosslinking of viral nanoparticles with “clickable” fluorescent crosslinkers at the interface

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cu (I) catalyzed alkyne-azide cycloaddition (CuAAC) reaction, a typical “click“ reaction, is one of the modular synthetic approaches which has been broadly used in various organic syntheses, medicinal chemistry, materials development and bioconjugation applications. We have for the first time synthesized two dialkyne derivatized fluorescent crosslinkers which could be applied to crosslink two biomolecules using CuAAC reaction. Turnip yellow mosaic virus, a plant virus with unique structural and chemical properties, was used as a prototypical scaffold to form a 2D single layer at the interface of two immiscible liquids and crosslinked with these two linkers by the CuAAC reaction. Upon crosslinking, the fluorescence of both linkers diminished, likely due to the distortion of the polymethylene backbone, which therefore could be used to indicate the completion of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40:2004–2011

    Article  CAS  Google Scholar 

  2. Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev, 2007, 36:1249–1262

    Article  CAS  Google Scholar 

  3. Wang Q, Chittaboina S, Barnhill HN. Advances in 1,3-dipolar cycloaddition reaction of azides and alkynes — A prototype of “click“ chemistry. Lett Org Chem, 2005, 2:293–301

    Article  CAS  Google Scholar 

  4. Rostovtsev VV, Green L, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes, Angew Chem Int Ed, 2001, 41: 2596

    Article  Google Scholar 

  5. Wu P, Fokin VV. Catalytic azide-alkyne cycloaddition: Reactivity and applications. Aldrichim Acta, 2007, 40:7–17

    CAS  Google Scholar 

  6. Lee LA, Niu Z, Wang Q. Viruses and virus -like protein assemblies — chemically programmable nanoscle building blocks. Nano Res, 2009, 2:349–364

    Article  CAS  Google Scholar 

  7. Diaz DD, Rajagopal K, Strable E, Schneider J, Finn MG. “Click” chemistry in a supramolecular environment: Stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc, 2006, 128:6056–6057

    Article  CAS  Google Scholar 

  8. Gheorghe A, Matsuno A, Reiser O. Expedient immobilization of TEMPO by copper-catalyzed azide-alkyne [3+2]-cycloaddition onto polystyrene resin. Adv Synth Catal, 2006, 348:1016–1020

    Article  CAS  Google Scholar 

  9. Nandivada H, Jiang X, Lahann J. Click chemistry: Versatility and control in the hands of materials scientists. Adv Mater, 2007, 19:2197–2208

    Article  CAS  Google Scholar 

  10. Diaz DD, Punna S, Holzer P, McPherson AK, Sharpless KB, Fokin VV, Finn MG. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J Polym Sci Pol Chem, 2004, 42:4392–4403

    Article  CAS  Google Scholar 

  11. Li C, Finn MG. Click chemistry in materials synthesis. 2. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition. J Polym Sci, Part A: Polym Chem, 2006, 44:5513–5515

    Article  CAS  Google Scholar 

  12. Helms B, Mynar JL, Hawker CJ, Fréchet JMJ. Dendronized linear polymers via “click chemistry”. J Am Chem Soc, 2004, 126:15020–15021

    Article  CAS  Google Scholar 

  13. Vestberg R, Malkoch M, Kade M, Wu P, Fokin VV, Sharpless KB, Drockenmuller E, Hawker CJ. Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry. J Polym Sci, Part A: Polym Chem, 2007, 45:2835–2846

    Article  CAS  Google Scholar 

  14. Voit B. The potential of cycloaddition reactions in the synthesis of dendritic polymers. New J Chem, 2007, 31:1139–1151

    Article  CAS  Google Scholar 

  15. Wu P, Malkoch M, Hunt JN, Vestberg R, Kaltgrad E, Finn MG, Fokin VV, Sharpless KB, Hawker CJ. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun, 2005, 5775–5777

  16. Yoon K, Goyal P, Weck M. Monofunctionalization of dendrimers with use of microwave-assisted 1,3-dipolar cycloadditions. Org Lett, 2007, 9:2051–2054

    Article  CAS  Google Scholar 

  17. Brik A, Alexandratos J, Lin Y-C, Elder JH, Olson AJ, Wlodawer A, Goodsell DS, Wong C-H. 1,2,3-Triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem, 2005, 6:1167–1169

    Article  CAS  Google Scholar 

  18. Lee LV, Mitchell ML, Huang SJ, Fokin VV, Sharpless KB, Wong C-H. A potent and highly selective inhibitor of human a-1,3-fucosyltransferase via click chemistry. J Am Chem Soc, 2003, 125:9588–9589

    Article  CAS  Google Scholar 

  19. Qu W, Kung M-P, Hou C, Oya S, Kung HF. Quick assembly of 1,4-diphenyltriazoles as probes targeting β-amyloid aggregates in alzheimer’s disease. J Med Chem, 2007, 50:3380–3387

    Article  CAS  Google Scholar 

  20. Breinbauer R, Kohn M. Azide-alkyne coupling: A powerful reaction for bioconjugate chemistry. ChemBioChem, 2003, 2003,4:1147–1149

    Article  Google Scholar 

  21. Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG. Sitespecific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett, 2004, 14:5743–5745

    Article  CAS  Google Scholar 

  22. Lutz J. 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew Chem Int Ed, 2007, 46:1018–1025

    Article  CAS  Google Scholar 

  23. Raja KS, Wang Q, Finn MG. Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem, 2003, 4:1348–1351

    Article  CAS  Google Scholar 

  24. Seela F, Sirivolu VR. Nucleosides and oligonucleotides with diynyl side chains: base pairing and functionalization of 2′-deoxyuridine derivatives by the copper(I)-catalyzed alkyne-azide ‘click’ cycloaddition. Helv Chim Acta, 2007, 90:535–555

    Article  CAS  Google Scholar 

  25. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc, 2003, 125:3192–3193

    Article  CAS  Google Scholar 

  26. Beatty KE, Xie F, Wang Q, Tirrell DA. Selective dye-labeling of newly synthesized proteins in bacterial cells. J Am Chem Soc, 2005, 127:14150–14151

    Article  CAS  Google Scholar 

  27. Bruckman MA, Kaur G, Lee LA, Xie F, Sepulvecla J, Breitenkamp R, Zhang X, Joralemon M, Russell TP, Emrick T, Wang Q. Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem, 2008, 9:519–523

    Article  CAS  Google Scholar 

  28. Le Droumaguet C, Wang C, Wang, Q. Fluorogenic click reaction. Chem Soc Rev, 2010, 39:1233–1239

    Article  Google Scholar 

  29. Xie F, Sivakumar K, Zeng QB, Bruckman MA, Hodges B, Wang Q. A fluorogenic ‘click’ reaction of azidoanthracene derivatives. Tetrahedron, 2008, 64:2906–2914

    Article  CAS  Google Scholar 

  30. Marriott. G. Synthesis and applications of heterobifunctional photocleavable cross-linking reagents. Meth Enzymol, 1998, 291:155–175

    Article  CAS  Google Scholar 

  31. Kluger R, Amer A. Chemical cross-linking and protein-protein interactions — A review with illustrative protocols. Bioorg Chem, 2004, 32:451–472

    Article  CAS  Google Scholar 

  32. Bennett KL, Kussmann M, Bjork P, Godzwon M, Mikkelsen M, Sorensen P, Roepstorff P. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping — A novel approach to assess intermolecular protein contacts. Prot Sci, 2000, 9:1503–1518

    Article  CAS  Google Scholar 

  33. Jasin HE. Oxidative cross-linking of immune complexes by human polymorphonuclear leukocytes. J Clin Invest, 1988, 81:6–15

    Article  CAS  Google Scholar 

  34. Brown KC, Yang SH, Kodadek T. Highly specific oxidative crosslinking of proteins mediated by a nickel-peptide complex. Biochemistry, 1995, 34:4733–4739

    Article  CAS  Google Scholar 

  35. Fancy DA. Elucidation of protein-protein interactions using chemical crosslinking or label transfer techniques. Curr Opin Chem Biol, 2000, 4:28–33

    Article  CAS  Google Scholar 

  36. Armitage BA. Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. Topics Curr Chem, 2005, 253:55–76

    CAS  Google Scholar 

  37. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A review. Chem Rev, 2000, 100:1973–2011

    Article  CAS  Google Scholar 

  38. Patonay G, Salon J, Sowell J, Strekowski L. Noncovalent labeling of biomolecules with red and near-infrared dyes. Molecules, 2004, 9:40–49

    Article  CAS  Google Scholar 

  39. Tian H, Meng F. Solar cells based on cyanine and polymethine dyes. Opt Sci Eng, 2005, 99:313–329

    CAS  Google Scholar 

  40. Waggoner AS. The use of cyanine dyes for the determination of membrane potentials in cells, organelles, and vesicles. Meth Enzymol, 1979, 55:689–695

    Article  CAS  Google Scholar 

  41. Zhan W-H, Barnhill HN, Sivakumar K, Tian H, Wang Q. Synthesis of hemicyanine dyes for ‘click’ bioconjugation. Tetrahedron Lett, 2005, 46:1691–1695

    Article  CAS  Google Scholar 

  42. Barnhill HN, Reuther R, Ferguson PL, Dreher T, Wang Q. Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconj Chem, 2007, 18:852–859

    Article  CAS  Google Scholar 

  43. Barnhill HN, Claudel-Gillet S, Ziessel R, Charbonniere LJ, Wang Q. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. J Am Chem Soc, 2007, 129:7799–7806

    Article  CAS  Google Scholar 

  44. Kaur G, He JB, Xu J, Pingali SV, Jutz G, Boker A, Niu ZW, Li T, Rawlinson D, Emrick T, Lee B, Thiyagarajan P, Russell TP, Wang Q. Interfacial assembly of turnip yellow mosaic virus nanoparticles. Langmuir, 2009, 25:5168–5176

    Article  CAS  Google Scholar 

  45. Kaur G, Valarmathi MT, Potts JD, Wang Q. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials, 2008, 29:4074–4081

    Article  CAS  Google Scholar 

  46. Russell JT, Lin Y, Böker A, Long S, Carl P, Zettl H, He J, Sill K, Tangirala R, Emrick T, Littrell K, Thiyagarajan P, Cookson D, Fery A, Wang Q, Russell TP. Self-assembly and crosslinking of bionanoparticles at liquid-liquid interface. Angew Chem Int Ed, 2005, 44: 2420–2426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Tian or Qian Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, G., Zhan, W., Wang, C. et al. Crosslinking of viral nanoparticles with “clickable” fluorescent crosslinkers at the interface. Sci. China Chem. 53, 1287–1293 (2010). https://doi.org/10.1007/s11426-010-3191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3191-0

Keywords

Navigation