Skip to main content
Log in

A class of fascinating optoelectronic materials: Triarylboron compounds

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Triarylboron compounds are significant optoelectronic materials due to their excellent emissive and electron-transport properties, and could be applied in organic light-emitting diodes as emissive and/or electron-transport layers. Triarylboron compounds have vacant pπ orbital and have received increasing interest as fluoride ion and cyanide ion sensors utilizing specific Lewis acid-base interaction. This review summarizes their structural characteristics, optical properties and applications in chemosensors for anions and optoelectronic devices developed in recent years and discusses the problems and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Entwistle CD, Marder TB. Applications of three-coordinate organoboron compounds and polymers in optoelectronics. Chem Mater, 2004, 16(23): 4574–4585

    Article  CAS  Google Scholar 

  2. Zhao Q, Zhang H Y, Wakamiya A, Yamaguchi S. Coordination-induced intramolecular double cyclization: synthesis of boron-bridged dipyridylvinylenes and dithiazolylvinylenes. Synthesis, 2009, 1: 127–132

    Google Scholar 

  3. Elbing M, Bazan GC. A new design strategy for organic optoelectronic materials by lateral boryl substitution. Angew Chem Int Ed, 2008, 47(5): 834–838

    Article  CAS  Google Scholar 

  4. Matsumi N, Chujo Y. π-Conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polymer J, 2008, 40(2): 77–89

    Article  CAS  Google Scholar 

  5. Hudson ZM, Wang S. Impact of donor-acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes. Acc Chem Res, 2009, 42(10): 1584–1596

    Article  CAS  Google Scholar 

  6. Cui Y, Li FH, Lu ZH, Wang S. Three-coordinate organoboron with a B=N bond: substituent effects, luminescence/electroluminescence and reactions with fluoride. Dalton Trans, 2007, 25: 2634–264

    Article  Google Scholar 

  7. Lee MH, Agou T, Kobayashi J, Kawashima T, Gabbai FP. Fluoride ion complexation by a cationic borane in aqueous solution. Chem Commun, 2007, 11: 1133–1135

    Article  Google Scholar 

  8. Sun Y, Ross N, Zhao SB, Huszarik K, Jia WL, Wang RY, Macartney D, Wang S. Enhancing electron accepting ability of triarylboron via pi-conjugation with 2,2′-bipy and metal chelation: 5,5′-bis(BMes(2))-2,2′-bipy and its metal complexes. J Am Chem Soc, 2007, 129(24): 7510–7512

    Article  CAS  Google Scholar 

  9. Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev, 2003, 103(11): 4419–4476

    Article  CAS  Google Scholar 

  10. Gale PA. Structural and molecular recognition studies with acyclic anion receptors. Acc Chem Res, 2006, 39(7): 465–475

    Article  CAS  Google Scholar 

  11. Jia W L, Feng X D, Bai D R, Lu Z H, Wang S, Vamvounis G. MeS2B(p-4,4′-biphenyl-NPh(1-naphthyl)): A multifunctional molecule for electroluminescent devices. Chem Mater, 2005, 17(1): 164–170

    Article  CAS  Google Scholar 

  12. Mazzeo M, Vitale V, Della SF, Anni M, Barbarella G, Favaretto L, Sotgiu G, Cingolani R, Gigli G. Bright white organic light-emitting devices from a single active molecular material. Adv Mater, 2005, 17(1): 34–39

    Article  CAS  Google Scholar 

  13. Lin S L, Chan LH, Lee RH, Yen MY, Kuo WJ, Chen CT, Jeng RJ. Highly efficient carbazole-π-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes. Adv Mater, 2008, 20(20): 3947–3952

    Article  CAS  Google Scholar 

  14. Jia WL, Bai DR, Mccormick T, Liu QD, Motala M, Wang RY, Seward C, Tao Y, Wang SM. Three-coordinate organoboron compounds BAr2R (Ar = mesityl, R = 7-azaindolyl- or 2,2′-dipyridylaminofunctionalized aryl or thienyl) for electroluminescent devices and supramolecular assembly. Chem Eur J, 2004, 10(4): 994–1006

    Article  CAS  Google Scholar 

  15. Noda T, Shirota Y. 5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-bis(dimesitylboryl)-2,2′:5′,2″-terthiophene as a novel family of electron-transporting amorphous molecular materials. J Am Chem Soc, 1998, 120(37): 9714–9715

    Article  CAS  Google Scholar 

  16. Liu ZQ, Fang Q, Wang D, Cao DX, Xue G, Yu WT, Lei H. Trivalent boron as an acceptor in donor-acceptor-type compounds for single- and two-photon excited fluorescence. Chem Eur J, 2003, 9(20): 5074–5084

    Article  CAS  Google Scholar 

  17. Liu ZQ, Fang Q, Wang D, Xue G, Yu WT, Shao ZS, Jiang MH. Trivalent boron as acceptor in D-π-A chromophores: Synthesis, structure and fluorescence following single- and two-photon excitation. Chem Commun, 2002, 23: 2900–2901

    Article  Google Scholar 

  18. Doty JC, Babb B, Grisdale PJ, Glogowski M, Williams JLR. J Organomet Chem 1972, 38: 229–236

    Article  CAS  Google Scholar 

  19. Zhao CH, Wakamiya A, Inukai Y, Yamaguchi S. Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit. J Am Chem Soc, 2006, 128(50): 15934–15935

    Article  CAS  Google Scholar 

  20. Wakamiya A, Mori K, Yamaguchi S. 3-Boryl-2,2′-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. Angew Chem Int Ed, 2007, 46(23): 4273–4276

    Article  CAS  Google Scholar 

  21. Zhao CH, Wakamiya A, Yamaguchi S. Highly emissive poly(aryleneethynylene) s containing 2,5-diboryl-1,4-phenylene as a building unit. Macromolecules, 2007, 40(11): 3898–3900

    Article  CAS  Google Scholar 

  22. Reitzenstein D, Lambert C. Localized versus backbone fluorescence in N-p-(diarylboryl)phenyl-substituted 2,7-and 3,6-linked polycarbazoles. Macromolecules, 2009, 42(3): 773–782

    Article  CAS  Google Scholar 

  23. Liu C, Zhou ZG, Gao Y, Yang H, Li BG, Li FY, Huang CH. Fluorescence turn-on chemosensor for Hg2+ based on a rhodamine derivative and its application in bioimaging. Sci China Ser B-Chem, 2009, 52(6): 760–764

    Article  CAS  Google Scholar 

  24. Tang L, Jin JK, Zhang S, Mao Y, Sun JZ, Yuan WZ, Zhao H, Xu HP, Qin AJ, Tang BZ. Detection of the critical micelle concentration of cationic and anionic surfactants based on aggregation-induced emission property of hexaphenylsilole derivatives. Sci China Ser B-Chem, 2009, 52(6): 755–759

    Article  CAS  Google Scholar 

  25. Riggs BL. Bone and Mineral Research. The Netherlands: Elsevier, 1984. 366–367

    Google Scholar 

  26. Wiseman A, Handbook of Experimental Pharmacology. Berlin: Springer-Verlag, 1970. 48–52

    Google Scholar 

  27. Kirk KL. Biochemistry of the Halogens and Inorganic Halides. New York: Plenum Press, 1991. 58–59

    Google Scholar 

  28. Zhou G, Baumgarten M, Mullen K. Mesitylboron-substituted ladder-type pentaphenylenes: Charge-transfer, electronic communication, and sensing properties. J Am Chem Soc, 2008, 130(37): 12477–12484

    Article  CAS  Google Scholar 

  29. Liu XY, Bai DR, Wang S. Charge-transfer emission in nonplanar three-coordinate organoboron compounds for fluorescent sensing of fluoride. Angew Chem Int Ed, 2006, 45(33): 5475–5478

    Article  CAS  Google Scholar 

  30. Bai DR, Liu XY, Wang S. Charge-transfer emission involving three-coordinate organoboron: V-shape versus U-shape and impact of the spacer on dual emission and fluorescent sensing. Chem Eur J, 2007, 13(20): 5713–5723

    Article  CAS  Google Scholar 

  31. Cao DX, Liu ZQ, Zhang GH, Li GZ. The synthesis, photophysical properties and fluoride anion recognition of a novel branched organoboron compound. Dyes Pigments, 2009, 81(3): 193–196

    Article  CAS  Google Scholar 

  32. Liu ZQ, Shi M, Li FY, Fang Q, Chen ZH, Yi T, Huang CH. Highly selective two-photon chemosensors for fluoride derived from organic boranes. Org Lett, 2005, 7(24): 5481–5484

    Article  CAS  Google Scholar 

  33. Arnendola V, Bonizzoni M, Estebangomez D, Fabbrizzi L, Licchelli M, Sancenon F, Taglietti A. Some guidelines for the design of anion receptors. Coord Chem Rev, 2006, 250(11–12): 1451–1470

    Article  Google Scholar 

  34. Sole S, Gabbai FP. A bidentate borane as colorimetric fluoride ion sensor. Chem Commun, 2004, 11: 1284–1285

    Article  Google Scholar 

  35. Melaimi M, Gabbai FP. A heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor. J Am Chem Soc, 2005, 127(27): 9680–9681

    Article  CAS  Google Scholar 

  36. Dorsey CL, Jewula P, Hudnall TW, Hoefelmeyer JD, Taylor TJ, Honesty NR, Chiu CW, Schulte M, Gabbai FP. Fluoride ion complexation by a B2/Hg heteronuclear tridentate lewis acid. Dalton Trans, 2008, 4442–4450

  37. Chiu CW, Gabbai FP. Fluoride ion capture from water with a cationic borane. J Am Chem Soc, 2006, 128(44): 14248–14249

    Article  CAS  Google Scholar 

  38. Lee MH, Gabbai FP. Synthesis and properties of a cationic bidentate lewis acid. Inorg Chem, 2007, 46(20): 8132–8138

    Article  CAS  Google Scholar 

  39. Hudnall TW, Gabbai FP. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J Am Chem Soc, 2007, 129(39): 11978–11986

    Article  CAS  Google Scholar 

  40. Hudnall TW, Kim YM, Bebbington MW, Bourissou D, Gabbai FP. Fluoride ion chelation by a bidentate phosphonium/borane Lewis acid. J Am Chem Soc, 2008, 130(33): 10890–10891

    Article  CAS  Google Scholar 

  41. Kim Y, Gabbai FP. Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level. J Am Chem Soc, 2009, 131(9): 3363–3369

    Article  CAS  Google Scholar 

  42. Zhao SB, Mccormick T, Wang S. Ambient-temperature metal-to-ligand charge-transfer phosphorescence facilitated by triarylboron: Bnpa and its metal complexes. Inorg Chem, 2007, 46(26): 10965–10967

    Article  CAS  Google Scholar 

  43. Sun Y, Wang S. Conjugated Triarylboryl donor-acceptor systems supported by 2,2′-bipyridine: metal chelation impact on intraligand charger transfer emission, electron accepting ability, and “turn-on” fluoride sensing. Inorg Chem, 2009, 48(8): 3755–3767

    Article  CAS  Google Scholar 

  44. Hudson ZM, Zhao SB, Wang RY, Wang S. Switchable Ambienttemperature singlet-triplet dual emission in nonconjugated donor-acceptor triarylboron-Pt-II complexes. Chem Eur J, 2009, 15(25): 6131–6137

    Article  CAS  Google Scholar 

  45. Chou PT, Chi Y. Phosphorescent dyes for organic light-emitting diodes. Chem Eur J, 2007, 13(2): 380–395

    Article  CAS  Google Scholar 

  46. Grushin V V. Mixed phosphine-phosphine oxide ligands. Chem Rev, 2004, 104(3): 1629–1662

    Article  CAS  Google Scholar 

  47. Zhao Q, Li L, Li F Y, Yu M X, Liu Z P, Yi T, Huang C H. Aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes. Chem Commun, 2008, 6: 685–687

    Article  Google Scholar 

  48. Zhao Q, Li FY, Liu SJ, Yu MX, Liu ZQ, Yi T, Huang CH. Highly selective phosphorescent chemosensor for fluoride based on an iridium( III) complex containing arylborane units. Inorg Chem, 2008, 47(20): 9256–9264

    Article  CAS  Google Scholar 

  49. Xu WJ, Liu SJ, Zhao XY, Sun S, Cheng S, Ma TC, Sun HB, Zhao Q, Huang W. Novel cationic iridium(III) complex containing both triarylboron and carbazole moieties as ratiometric fluoride probe utilizing the switchable triplet-singlet emission. Chem Eur J, in press

  50. You YM, Park SY. A phosphorescent Ir(III) complex for selective fluoride ion sensing with a high signal-to-noise ratio. Adv Mater, 2008, 20(20): 3820–3826

    Article  CAS  Google Scholar 

  51. Lam ST, Zhu NA, Yam VW. Synthesis and characterization of luminescent rhenium(I) tricarbonyl diimine complexes with a triarylboron moiety and the study of their fluoride ion-binding properties. Inorg Chem, 2009, 48(20): 9664–9670

    Article  CAS  Google Scholar 

  52. Lou XD, Li Z, Qin JG. DDTC-Na-based colorimetric chemosensor for the sensing of cyanide in water. Sci China Ser B-Chem, 2009, 52(6): 802–808

    Article  CAS  Google Scholar 

  53. Huh JO, Do Y, Lee MH. A BODIPY borane dyad for the selective complexation of cyanide ion. Organometallics. 2007, 27(6): 1022–1025

    Article  Google Scholar 

  54. Chiu CW, Kim Y, Gabbai FP. Lewis acidity enhancement of triarylboranes via peripheral decoration with cationic groups. J Am Chem Soc, 2009, 131(1): 60–61

    Article  CAS  Google Scholar 

  55. Kim Y, Zhao H, Gabbai FP. Sulfonium boranes for the selective capture of cyanide ions in water. Angew Chem Int Ed, 2009, 48(27): 4957–4960

    Article  CAS  Google Scholar 

  56. Wade CR, Gabbai FP. Cyanide anion binding by a triarylborane at the outer rim of a cyclometalated ruthenium(II) cationic complex. Inorg Chem, 2010, 49(2): 714–720

    Article  CAS  Google Scholar 

  57. Yamaguchi S, Akiyama S, Tamao K. Tri-9-anthrylborane and its derivatives: New boron-containing pi-electron systems with divergently extended pi-conjugation through boron. J Am Chem Soc, 2000, 122(26): 6335–6336

    Article  CAS  Google Scholar 

  58. Yasuhiko S, Motoi K, Tetsuya N, Kenji O, Takahiro O. A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-“4-[bis(4-methylphenyl)amino]phenyl”-5-(dimesitylboryl) thiophene and 2-(4-[bis(9,9-dimethylfluorenyl)amino]phenyl)-5-(dimesityl-borly)thiophene. J Am Chem Soc, 2000, 122(44): 11021–11022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhao, QiDan Ling or Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mou, X., Liu, S., Dai, C. et al. A class of fascinating optoelectronic materials: Triarylboron compounds. Sci. China Chem. 53, 1235–1245 (2010). https://doi.org/10.1007/s11426-010-3190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3190-1

Keywords

Navigation