Skip to main content
Log in

Synthesis, characterization, structures and magnetic property of chiral oxalate-bridged dicopper(II) complexes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The oxalato-bridged dicopper(II) complexes [Cu2(μ-ox)(LRR)2(H2O)2(ClO4)2] (1), [Cu2(μ-ox)(LRR)2(CH3COCH3)2(ClO4)2](1a), [Cu2(μ-ox)(LSS)2(H2O)2(ClO4)2] (2) and [Cu2(μ-ox)(LRR)(LSS)2(CH3COCH3)2(ClO4)2] (3) [LRR = (8R,10R)-(−)-[4,5]-pineno-2,2′-bipyridine, LSS = (8S,10S)-(+)-[4,5]-pineno-2,2′-bipyridine; ox2− = oxalate] were first prepared. A possible mechanism for the formation of the chial dicopper(II) complexes was proposed. Based on elemental analysis, conductance measurement, UV-Vis spectra, CD spectra and X-ray single-crystal diffraction, the oxalato-bridged structures of 1 and 2 were deduced to adopt two Cu(II) ions and the bridged oxalate lying in the nearly same plane. The crystal structures of 1a and 3 reveal that the coordination geometry around each Cu(II) ion is an elongated and distorted octahedron and two axial solvent molecules and two perchlorate ions are anti to each other respectively in both binuclear molecules. The solution CD spectra of 1 and 2 in the visible d-d range show very weak Cotton effects with peaks at 588 and 779 nm, which are approximately of mirror image, suggesting the optical activities may be derived from the vicinal effects of the chiragenic centers at the pinene group of LRR and LSS, respectively. Complex 1 has been characterized by variable-temperature magnetic susceptibility and the data was least-square fitted to the Blenaey-Bowers equation. The exchange integral J was found to be −338.41(4) cm−1 indicating a strong antiferromagnetic interaction between two copper(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Train C, Gheorghe R, Krstic V, Chamoreau LM, Ovanesyan NS, Rikken GLJA, Gruselle M, Verdaguer M. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater, 2008, 7: 729–734

    Article  CAS  Google Scholar 

  2. Gruselle M, Train C, Boubekeur K, Gredin P, Ovanesyan N. Enantioselective self-assembly of chiral bimetallic oxalate-based networks. Coord Chem Rev, 2006, 250: 2491–2500

    Article  CAS  Google Scholar 

  3. Zhang H. Coordination Chemistry Principles and Applications. Beijing: Chemical Industry Press, 2009, 249–251

    Google Scholar 

  4. Rikken GLJA, Raupach E. Observation of magneto-chiral dichroism. Nature, 1997, 390: 493–494

    Article  CAS  Google Scholar 

  5. Barron LD. Chirality, magnetism and light. Nature, 2000, 405: 895–896

    Article  CAS  Google Scholar 

  6. Rikken GLJA, Raupach E. Enantioselective magnetochiral photochemistry. Nature, 2000, 405: 932–935

    Article  CAS  Google Scholar 

  7. Minguet M, Luneau D, Paulsen C, Lhotel E, Gorski A, Waluk J, Amabilino DB, Veciana J. From purely organic to metallo-organic chiral magnetic materials. Polyhedron, 2003, 22: 2349–2354

    Article  CAS  Google Scholar 

  8. Okawa H, Inoue K. A Chiral molecular based metamagnet prepared from managanese ions and a chiral triplet organic radical as a bridging ligand. Angew Chem Int Ed, 1999, 38: 1601–1603

    Article  Google Scholar 

  9. Inoue K, Kikuchi K, Ohba M, Okawa H. Structure and magnetic properties of a chiral two-dimensional ferrimagnet with Tc of 38 K. Angew Chem Int Ed, 2003, 42: 4810–4813

    Article  CAS  Google Scholar 

  10. Coronado E, Gómez-García CJ, Nuez A, Francisco M. Romero FM, Rusanov E, Stoeckli-Evans H. Ferromagnetism and chirality in two-dimensional cyanide-bridged bimetallic compounds. Inorg Chem, 2002, 41: 4615–4617

    Article  CAS  Google Scholar 

  11. Wen HR, Zuo JL, Liu W, Song Y, You XZ. Syntheses, structure and properties of chiral copper(II) complexes with end-on azide bridge and chiral-bipyridine ligand. Inorg Chim Acta, 2005, 358: 2565–2570

    Article  CAS  Google Scholar 

  12. Decurtins S, Schmalle HW, Schneuwly P, Ensling J, Guetlich P. A concept for the synthesis of 3-dimensional homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. structural, moessbauer, and magnetic studies in the field of molecular-based magnets. J Am Chem Soc, 1994, 116: 9521–9528

    Article  CAS  Google Scholar 

  13. Andrés R, Gruselle M, Train C, Malézieux B, Verdaguer M, Vaissermann J. Enantioselective synthesis of optically active polymeric homo- and bimetallic oxalate-bridged networks [M2(ox)3]n. Inorg Chem, 1999, 38: 4637–4646

    Article  Google Scholar 

  14. Coronado E, Galán-Mascarós JR, Gómez-GarcÍa CJ, MartÍnez-Agudo JM. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3] [ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion). Inorg Chem, 2001, 40: 113–120

    Article  CAS  Google Scholar 

  15. Andrés R, Brissard M, Gruselle M, Train C, Vaissermann J, Malézieux B, Jamet JP, Verdaguer M. Rational design of three-dimensional (3D) optically active molecule-based magnets: synthesis, structure, optical and magnetic properties of “[Ru(bpy)3]2+, ClO4, [MnIICrIII(ox)3]n and “[Ru(bpy)2ppy]+, [MIICrIII(ox)3]n, with MII = MnII, NiII. X-ray structure of “[ΔRu(bpy)3]2+, ClO 4 , [ΔMnIIΔCrIII(ox)3] n and “[ΔRu(bpy)2ppy]+, [ΛMnIIΛCrIII(ox)3] n. Inorg Chem, 2001, 40: 4633–4640

    Article  Google Scholar 

  16. Gruselle M, Thouvenot R, Malézieux B, Train C, Gredin P, Demeschik TV, Troitskaya LL, Sokolov VI. Enantioselective self-assembly of bimetallic [MnII(Δ)-CrIII(C2O4)3] and [MnII(Λ)-CrIII(C2O4)3] layered anionic networks templated by the optically active (Rp)- and (Sp)-[1-CH2N(n-C3H7)3-2-CH3 -C5H3Fe-C5H5]+ cations. Chem Eur J, 2004, 10: 4763–4769

    Article  CAS  Google Scholar 

  17. Pointillart F, Train C, Gruselle M, Villain F, Schmalle HW, Talbot D, Gredin P, Decurtins S, Verdaguer M. Chiral templating activity of tris(bipyridine)ruthenium(II) cation in the design of three-dimensional (3D) optically active oxalate-bridged “[Ru(bpy)3][Cu2x Ni2(1−x)(C2O4)3]”n (0⩽x⩽1; bpy = 2,2′-bipyridine): structural, optical, and magnetic studies. Chem Mater, 2004, 16: 832–841

    Article  CAS  Google Scholar 

  18. Gispert JR. Coordination Chemistry. Weinheim: Wiley-VCH, 2008. 323–325

    Google Scholar 

  19. Costisor O, Brezeanu M, Journaux Y, Mereiter K, Weinberger P, Linert W. A novel salt formed by mixed-valence vanadium(IV, V) [(VO)2O(bpy)2(C2O4)2] anions and ferromagnetic [Cu2(bpy)4(C2O4)] cations: Structure, spectroscopic characterization and magnetic properties. Eur J Inorg Chem, 2001, (8): 2061–2066

    Article  Google Scholar 

  20. Julve M, Verdaguer M, Gleizes A, Philoche-Levisalles M, Kahn O. Design of µ-oxalato copper(II) binuclear complexes exhibiting expected magnetic properties. Inorg Chem, 1984, 23: 3808–3818

    Article  CAS  Google Scholar 

  21. Julve M, Faus J, Verdaguer M, Gleizes A. Copper(II), a chemical Janus: two different (oxalato)(bipyridyl) copper(II) complexes in one single crystal. Structure and magnetic properties. J Am Chem Soc, 1984, 106: 8306–8308

    Article  CAS  Google Scholar 

  22. Castillo O, Muga I, Luque A, Gutiérrez-Zorrilla JM, Sertucha J, Vitoria P, Román P. Synthesis, chemical characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) binuclear complexes with 2,2′-bipyridine and diethylenetriamine as peripheral ligands. Polyhedron, 1999, 18: 1235–1245

    Article  CAS  Google Scholar 

  23. Tang JK, Gao EQ, Bu WM, Liao DZ, Yan SP, Jiang ZH, Wang GL. Synthesis and crystal structure of oxalato-bridged dicopper(II) complex with hydrogen bonds [Cu2(μ-C2O4)(bpy)2(H2O)2(NO3)2]. J Mol Struct, 2000, 525: 271–275

    Article  CAS  Google Scholar 

  24. Chattopadhyay SK, Seth S, Mak TCW. Studies of copper(II) thiosemicarbazide complexes and their reactivities. X-ray structure of two unusual reaction products, [Cu(bpy)(H2O)SO4] and [(bpy)2Cu2-(C2O4)Cl2]·H2O. J Coord Chem, 2002, 55: 259–270

    Article  CAS  Google Scholar 

  25. Smékal Z, Thornton P, Šindelář Z, Klička R. Synthesis and characterization of binuclear (μ-oxalato) copper(II) and nickel(II) complexes. Polyhedron, 1998, 17: 1631–1635

    Article  Google Scholar 

  26. Smékal Z, Langer V, Wrzeszcz G, Klasova P. Synthesis and characterization of binuclear (μ-oxalato) copper(II) complexes with N,N′-diethylethylenediamine or N,N,N′-trimethyl ethylenediamine. J Coord Chem, 2002, 55: 595–608

    Article  Google Scholar 

  27. Kato M, Sah AK, Tanase T, Mikuriya M. Tetranuclear copper(II) complexes bridged by α-d-glucose-1-phosphate and incorporation of sugar acids through the Cu4 core structural changes. Inorg Chem, 2006, 45: 6646–6660

    Article  CAS  Google Scholar 

  28. Noyori R. Chiral metal complexes as discriminating molecular catalysts. Science, 1990, 248: 1194–1199

    Article  CAS  Google Scholar 

  29. de Richte RK, Bonato M, Follet M, Kamenka JM. The (+)- and (−)-[2-(1,3-dithianyl)] myrtanylborane. solid and stable monoalkylboranes for asymmetric hydroboration. J Org Chem, 1990, 55: 2855–2860

    Article  Google Scholar 

  30. Hayoz P, von Zelewsky A, Stoeckli-Evans H. Stereoselective synthesis of octahedral complexes with predetermined helical chirality. J Am Chem Soc, 1993, 115: 5111–5114

    Article  CAS  Google Scholar 

  31. Japanese Chemical Society. Synthesis of Inorganic Compounds Manual, (Vol. III). 1988. 90

    Google Scholar 

  32. Scheldrick GM. SHELXL97 and SHELXS97. Göttingen: University of Göttingen, 1997

    Google Scholar 

  33. Cortes R, Urtiaga MK, Lezama L, Arriortua MI, Rojo T. A ferromagnetic copper(II)-vanadium(IV) oxide μ-oxalato complex: crystallographic structure and spectroscopic and magnetic properties. Inorg Chem, 1994, 33: 829–832

    Article  CAS  Google Scholar 

  34. Girolami GS, Rauchfuss TB, Robert JA. Synthesis and Technique in Inorganic Chemistry. 3rd ed. Sausalito: University Science Books, 1999. 254

    Google Scholar 

  35. Lee BW, Min KS, Doh MK. Copper(II) complexes with novel chiral amidate ligands. Inorg Chem Commun, 2002, 5: 163–165

    Article  CAS  Google Scholar 

  36. Kahn O. Molecular Magnetism. New York: Wiley-VCH, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Fan or Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Wang, J., Zhu, C. et al. Synthesis, characterization, structures and magnetic property of chiral oxalate-bridged dicopper(II) complexes. Sci. China Chem. 53, 1255–1260 (2010). https://doi.org/10.1007/s11426-010-3187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3187-9

Keywords

Navigation