Skip to main content
Log in

A whisker-like carbon composite for the immobilization of laccase and its bioelectrochemistry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel mesoporous carbon/whisker-like carbon (MCWC) composite was used for the immobilization of laccase (Lac) and its bioelectrochemical behaviors were studied. It was confirmed by XPS that Lac was strongly adsorbed on the surface of the MCWC composite. The cyclic voltammetric results showed that the immobilized Lac underwent a direct quasi-reversible electrochemical reaction. The value of the electron transfer rate constant k s was estimated to be 0.770 s−1, indicating a reasonably fast electron transfer between the immobilized Lac and the underlying electrode. The surface concentration (Γ) of Lac was estimated to be 2.730 × 10−12 mol/cm2. Further experimental results showed that the immobilized Lac displayed an appreciable electrocatalytic activity to the electrochemical reduction of O2. These properties could be attributed to the particular structure of loosely packed nanometer-scale carbon whiskers and the existence of a large amount of oxygen-containing groups. The immobilization method and the novel carrier (MCWC) may find new applications in fabricating the biocatalysts for biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheller FW, Wollenberger U, Lei C, Jin W, Ge B, Lehmann C, Lisdat F, Fridman V. Bioelectrocatalysis by redox enzymes at modified electrodes. Rev Molecul Biotechnol, 2002, 82: 411–424

    Article  CAS  Google Scholar 

  2. Armstrong FA, Wilson GS. Recent developments in faradaic bioelectrochemistry. Electrochimica Acta, 2000, 45: 2623–2645

    Article  CAS  Google Scholar 

  3. Kievit O, Brudvig GW. Direct electrochemistry of photosystem I. J Electroanal Chem, 2001, 497: 139–149

    Article  CAS  Google Scholar 

  4. Cai CX, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem, 2004, 332: 75–83

    Article  CAS  Google Scholar 

  5. Wu Y, Komatsu T, Tsuchida E. Electrochemical studies of albuminheme hybrid in aqueous media by modified electrode. Inorg Chim Acta, 2001, 322: 120–124

    Article  CAS  Google Scholar 

  6. Andolfi L, Bruce D, Cannistraro S, Canters GW, Davis JJ, Hill HAO, Crozier J, Verbeet MP, Wrathmell CL, Astier Y. The electrochemical characteristics of blue copper protein monolayers on gold. J Electroanal Chem, 2004, 565: 21–28

    Article  CAS  Google Scholar 

  7. Barker PD, Gleria KD, Hill HAO, Lowe VJ. Electro-transfer reactions of metalloproteins at peptide-modified gold electrodes. Eur J Biochem, 1990, 190: 171–175

    Article  CAS  Google Scholar 

  8. Santucci R, Faraoni A, Campanella L, Tranchide G, Brunori M. Use of solid-state promoters in the electrochemistry of cytochrome-c at a gold electrode. Biochem J 1991, 273: 783–786

    CAS  Google Scholar 

  9. Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD. Laccase properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol, 1994, 49: 257–280

    Article  CAS  Google Scholar 

  10. Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev, 1996, 96: 2563–2605

    Article  CAS  Google Scholar 

  11. Xu F. Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta, 1996, 1292: 303–311

    Google Scholar 

  12. Willner I. Biomaterials for sensors, fuel cells, and circuitry. Science, 2002, 298: 2407–2408

    Article  CAS  Google Scholar 

  13. Heller A. Miniature biofuel cells. Phys Chem Chem Phys, 2004, 3: 209–216

    Article  Google Scholar 

  14. Barton SC. Enzymatic biofuel cells for Implantable and microscale devices. Chem Rev, 2004, 104: 4867–4886

    Article  CAS  Google Scholar 

  15. Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A. The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc, 2001, 123: 5802–5803

    Article  CAS  Google Scholar 

  16. Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A. Electroreduction of O2 to water on the “wired” laccase cathode. J Phys Chem B, 2001, 105: 11917–11921

    Article  CAS  Google Scholar 

  17. Mano NJ. Fernandez L, Kim Y, Shin W, Bard AJ, Heller A. Oxygen is electroreduced to water on a “wired” enzyme electrode at a lesser overpotential than on platinum. J Am Chem Soc, 2003, 125: 15290–15291

    Article  CAS  Google Scholar 

  18. Katz E, Buckmann A F, Willner I. Self-powered enzyme-based biosensors. J Am Chem Soc, 2001, 123: 10752–10753

    Article  CAS  Google Scholar 

  19. Haghighi B, Gorton L, Jonsson LJ, Ruzgas T. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Anal Chim Acta, 2003, 487: 3–14

    Article  CAS  Google Scholar 

  20. Faulkner KM, Bonaventura C, Crumbliss AL. A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins. J Biol Chem, 1995, 270: 13604–13612

    Article  CAS  Google Scholar 

  21. Berezin IV, Bogdanovskaya VA, Varfolomeev SD, Tarasevich MR, Yaropolov A I. Bioelectrocatalysis. Equilibrium oxygen potential in the presence of laccase. Dokl Akad Nauk SSSR, 1978, 240: 615–618

    CAS  Google Scholar 

  22. Lee CW, Gray HB, Anson FC, Malmström BG. Catalysis of the reduction of dioxygen at graphite electrodes coated with fungal laccase. J Electroanal Chem, 1984, 172: 289–300

    Article  CAS  Google Scholar 

  23. Thuesen MH, Farver O, Reinhammar B, Ulstrup J. Cyclic voltammetry and electrocatalysis of the blue copper oxidase Polyporus versicolor laccase. Acta Chem Scand, 1998, 52: 555–562

    Article  CAS  Google Scholar 

  24. Wang YG, Li HQ, Xia YY. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater, 2006, 18: 2619–2623

    Article  CAS  Google Scholar 

  25. Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler PJ, Sloan JJ, Xavier AV, Tsang SC. The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta, 1998, 272: 261–266

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR. Electrochemical Methods, Fundamental and Applications. New York: John Wiley & Sons Inc., 2001. 594

    Google Scholar 

  27. Murray RW. Chemically modified electrodes. In: Bard AJ, ed. Electroanalytic Chemistry. New York: Marcel Dekker, 1984. 13: 205

    Google Scholar 

  28. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system. J Electroanal Chem, 1979, 101: 19–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoXian Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, G., Zhong, Q. & Lu, T. A whisker-like carbon composite for the immobilization of laccase and its bioelectrochemistry. Sci. China Chem. 53, 1332–1336 (2010). https://doi.org/10.1007/s11426-010-3186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3186-x

Keywords

Navigation