Skip to main content
Log in

A pH- and temperature-sensitive macrocyclic graft copolymer composed of PEO ring and multi-poly(2-(dimethylamino) ethyl methacrylate) lateral chains

  • Articles
  • Special Topic Advances in Principles of Polymerization
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel method for the synthesis of macrocyclic graft copolymers was developed through combination of anionic ring-opening polymerization (AROP) and atom transfer radical polymerization (ATRP). A linear α,ω-dihydroxyl poly(ethylene oxide) with pendant acetal protected hydroxyl groups (l-poly(EO-co-EEGE)) was prepared first by the anionic copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE). Then l-poly(EO-co-EEGE) was cyclized. The crude cyclized product containing the linear byproduct was hydrolyzed and purified by being treated with α-CD. The pure cyclic copolymer [c-poly(EO-co-Gly)] was esterified by reaction with 2-bromoisobutyryl bromide, and then used as ATRP macroinitiators to initiate polymerization of 2-(dimethylamino) ethyl methacrylate (DMAEMA), and a series of pH- and temperature-sensitive macrocyclic graft copolymers composed of a hydrophilic PEO as the ring and PDMAEMA as side chains (c-PEO-g-PDMAEMA) were obtained. The behavior of pH- and temperature-sensitive macrocyclic copolymers was studied in aqueous solution by fluorescence and dynamic light scattering (DLS). The critical micellization pH values of macrocyclic graft copolymers and their corresponding linear graft copolymers (l-PEO-g-PDMAEMA) were measured. Under the same conditions, the cyclic graft copolymer with the shorter side chains gave the higher critical micellization pH value. The c-PEO-g-PDMAEMA showed the lower critical micellization pH value than the corresponding l-PEO-g-PDMAEMA. The average hydrodynamic diameters (D h) of the micelles were measured by DLS with the variation of the aqueous solution pH value and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess G. Micellization of block copolymers. Prog Polym Sci, 2003, 28, 1107–1170

    Article  CAS  Google Scholar 

  2. Soo PL, Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B: Polym Phys, 2004, 42, 923–938

    Article  CAS  Google Scholar 

  3. Rodriguez-Hernandez J, Checot F, Gnanou Y, Lecommandoux S. Toward ’smart’ nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci, 2005, 30, 691–724

    Article  CAS  Google Scholar 

  4. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci, 2005, 30, 725–782

    Article  CAS  Google Scholar 

  5. Zhang M, Muller A. Cylindrical polymer brushes. J Polym Sci Part A: Polym Chem, 2005, 43, 3461–3481

    Article  CAS  Google Scholar 

  6. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31, 5559–5562

    Article  CAS  Google Scholar 

  7. Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization. J Polym Sci Part A: Polym Chem, 2005, 43, 5347–5393

    Article  CAS  Google Scholar 

  8. Moad G, Chong YK, Postma A, Rizzardo E, Thang SH. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46, 8458–8468

    Article  CAS  Google Scholar 

  9. Osada Y, Gong JP. Soft and wet materials: Polymer gels. AdV Mater, 1998, 10, 827–837

    Article  CAS  Google Scholar 

  10. Galaev IY, Mattiasson B. ’smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol, 1999, 17, 335–340

    Article  CAS  Google Scholar 

  11. Gillies ER, Fréchet JMJ. Development of acid-sensitive copolymer micelles for drug delivery. Pure Appl. Chem. 2004, 76, 1295–1307

    Article  CAS  Google Scholar 

  12. Camail M, Essaoudi H, Margaillan A, Vernet JL. Copolymérisation radicalaire de méthacrylates de 2-aminoéthyle avec le méthacrylate de méthyle. Eur Polym Mater, 1995, 31, 1119–1125

    Article  CAS  Google Scholar 

  13. Du R, Zhao J. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J Membr Sci, 2004, 239, 183–188

    Article  CAS  Google Scholar 

  14. Jones RA, Poniris MH, Wilson MR. (P)DMAEMA is internalised by endocytosis but does not physically disrupt endosomes. J Controlled Release, 2004, 96, 379–391

    Article  CAS  Google Scholar 

  15. Gokel GW, Leevy WM, Weber ME. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem ReV, 2004, 104, 2723–2750

    Article  CAS  Google Scholar 

  16. Gibson SE, Lecci C. Amino acid derived macrocycles — An area driven by synthesis or application. Angew Chem Int.Ed, 2006, 45, 1364–1377

    Article  CAS  Google Scholar 

  17. Semlyen JA. Synthetic Cyclic Polymers. Large Ring Molecules. New York: Willy, 1996

    Google Scholar 

  18. Ederle Y, Naraghi KS, Lutz P. Synthesis of cyclic micromolecules. In: Synthesis of Polymers. Schluter AD, Ed. Mater Science and Technology Series, 1999. Willy

  19. Semlyen JA. Cyclic Polymers, 2nd ed. Dordrecht, the Netherlands: Kluwer Academic. 2000

    Google Scholar 

  20. Oike H, Hamada M, Eguchi S, Danda Y, Tezuka Y. Novel synthesis of single- and double-cyclic polystyrenes by electrostatic self-assembly and covalent fixation with telechelics having cyclic ammonium salt groups. Macromolecules, 2001, 34, 2776–2782

    Article  CAS  Google Scholar 

  21. Bielawski CW, Benitez D, Grubbs RH. An “endless” route to cyclic polymers. Science 2002, 297, 2041–2044

    Article  CAS  Google Scholar 

  22. Sun T, Yu GE, Price C, Booth C. Cyclic polyethers. Polymer, 1995, 36, 3775–3778

    Article  CAS  Google Scholar 

  23. Yu GE, Sinnathamby P, Price C, Booth C. Preparation of large cyclic poly(oxyethylene)s. Chem Commun, 1996, 31–32

  24. Fitton AH, Jane D, Miller R. Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis, 1987, 1140–1142

  25. Taton D, Borgne A, Sepulchre M, Soassky N. Synthesis of chiral and racemic functional polymers from glycidol and thioglycidol. Macromol Chem Phys, 1994, 195, 139–148

    Article  CAS  Google Scholar 

  26. Maier S, Sunder A, Frey H, Mulhaupt R. Synthesis of poly(glycerol)-block-poly(methyl acrylate) multi-arm star polymers. Macromol Rapid Commun, 2000, 21, 226–230

    Article  CAS  Google Scholar 

  27. Chen J, Jiang M, Zhang Y, Zhou H. Fluorescence studies on hydrophobic associations of fluorocarbon-modified poly(acrylic acid) solutions. Macromolecules, 1999, 32, 4861–4866

    Article  CAS  Google Scholar 

  28. Angot B, Taton D, Gnanou Y. Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene. Macromolecules, 2000, 33, 5418–5426

    Article  CAS  Google Scholar 

  29. Feng XS, Taton D, Chaikof EL, Gnanou Y. Toward an easy access to dendrimer-like poly(ethylene oxide)s. J Am Chem Soc, 2005, 127, 10956–10966

    Article  CAS  Google Scholar 

  30. Yan ZG, Yang Z, Price C, Booth C. Cyclization of poly(ethylene glycol) s and related block copolymers. Makromol Chem Rapid Commun, 1993, 14, 725–732

    Article  CAS  Google Scholar 

  31. Yu GE, Sinnathamby P, Price C, Booth C. Preparation of large cyclic poly(oxyethylene)s. Chem Commun, 1996, 1, 31–32

    Article  Google Scholar 

  32. Sun T, Yu GE, Price C, Booth C, Cooke J, Ryan AJ. Ostwald ripening in polyethylene blends. Polymer, 1995, 36, 3369–3775

    Article  Google Scholar 

  33. Laurent BA, Grason SM. An efficient route to well-defined macrocyclic polymers via “click” cyclization. J Am Chem Soc, 2006, 128, 4238–4239

    Article  CAS  Google Scholar 

  34. Lutz F, Tietze. Domino reactions in organic synthesis. Chem Rev, 1996, 96, 115–136

    Article  Google Scholar 

  35. Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M. Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules, 1997, 30, 7115–7118

    Article  CAS  Google Scholar 

  36. Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M. Complex formation of poly(epsilon-caprolactone) with cyclodextrins. Macromolecules, 2000, 33, 4472–4477

    Article  CAS  Google Scholar 

  37. Taton D, Leborgne A, Sepulchre M, Spassky N. Synthesis of chiral and racemic functional polymers from glycidol and thioglycidol. Macromol Chem Phys, 1994, 195, 139–148

    Article  CAS  Google Scholar 

  38. Neugebauer D, Sumerlin BS, Matyjaszewski K, Goodhart B, Sheiko SS. How dense are cylindrical brushes grafted from a multifunctional macroinitiator. Polymer, 2004, 45, 8173–8179

    Article  CAS  Google Scholar 

  39. Sumerlin BS, Neugebauer D, Matyjaszewski K. Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerization. Macromolecules, 2005, 38, 702–708

    Article  CAS  Google Scholar 

  40. Lobb EJ, Ma I, Billingham NC, Armes SP, Lewis AL. Facile synthesis of well-defined, biocompatible phosphorylcholine-based methacrylate copolymers via atom transfer radical polymerization at 20 degrees C. J Am Chem Soc, 2001, 123, 7913–7914

    Article  CAS  Google Scholar 

  41. Ma YH, Tang YQ, Billingham NC, Armes SP. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules, 2003, 36, 3475–3484

    Article  CAS  Google Scholar 

  42. Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: A fluorescence probe study. Macromolecules, 1991, 24, 1033–1040

    Article  CAS  Google Scholar 

  43. Lee AS, Gast AP, Bütün V, Armes SP. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles. Macromolecules, 1999, 32, 4302–4310

    Article  CAS  Google Scholar 

  44. Thurmond KB, Kowalewski T, Wooley KL. Shell Cross-linked knedels: A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres. J Am Chem Soc, 1997, 119, 6656–6665

    Article  CAS  Google Scholar 

  45. Kalyanasundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc, 1977, 99, 2039–2044

    Article  CAS  Google Scholar 

  46. Butun V, Billingham NC, Armes SP. Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates. Chem Commun, 1997, 671–672

  47. Lee AS, Gast AP, Butun V, Armes SP. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles. Macromolecules, 1999, 32, 4302–4310

    Article  CAS  Google Scholar 

  48. Butun V, Armes SP, Billingham NC. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer, 2001, 42, 5993–6008

    Article  CAS  Google Scholar 

  49. Vamvakaki M, Billingham NC, Armes SP. Synthesis of controlled structure water-soluble diblock copolymers via oxyanionic polymerization. Macromolecules, 1999, 32, 2088–2090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunLian Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, X., Jing, R., Pan, M. et al. A pH- and temperature-sensitive macrocyclic graft copolymer composed of PEO ring and multi-poly(2-(dimethylamino) ethyl methacrylate) lateral chains. Sci. China Chem. 53, 1653–1662 (2010). https://doi.org/10.1007/s11426-010-3181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3181-2

Keywords

Navigation