Skip to main content
Log in

Electrospinning of ultrafine core/shell fibers for biomedical applications

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Because of the inherent appearance similar to the natural extracellular matrix, ultrafine fibrous membranes prepared via electrospinning exhibit widespread applications, especially in the biomedical area. Extensional modifications of coaxial and emulsion electrospinning have drawn much attention in preparation of core/shell fibers for applications as tissue engineering scaffolds and controlled delivery systems for bioactive substances. Due to incorporation of multi-components in the electrospun core/shell fibers, the process of coaxial and emulsion electrospinning became more susceptible. The theories have not been fully understood. A series of investigations were carried out evaluating the systematic and processing parameters. This paper reviews advantages and potentials of electrospun core/shell fibers as well as factors influencing their formation on the basis of our research and new progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 2003, 63(15): 2223–2253

    Article  CAS  Google Scholar 

  2. Koombhongse S, Liu WX, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci B-Polym Phys, 2001, 39(21): 2598–2606

    Article  CAS  Google Scholar 

  3. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng, 2006, 12(5): 1197–1211

    Article  CAS  Google Scholar 

  4. Kim K, Yu M, Zong XH, Chiu J, Fang DF, Seo Y-S, Hsiao B S, Chu B, Hadjiargyrou M. Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003, 24(27): 4977–4985

    Article  CAS  Google Scholar 

  5. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15): 2603–2610

    Article  CAS  Google Scholar 

  6. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003, 24(12): 2077–2082

    Article  CAS  Google Scholar 

  7. Tan EPS, Ng SY, Lim CT. Tensile testing of a single ultrafine polymeric fiber. Biomaterials, 2005, 26(13): 1453–1456

    Article  CAS  Google Scholar 

  8. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 2005, 26(6): 599–609

    Article  CAS  Google Scholar 

  9. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60(4): 613–621

    Article  CAS  Google Scholar 

  10. Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. J Biomed Mater Res, 2004, 70B(2): 286–296

    Article  CAS  Google Scholar 

  11. Duan B, Wu LL, Yuan XY, Hu Z, Li XL, Zhang Y, Yao KD, Wang M. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J Biomed Mater Res, 2007, 83A(3): 868–878

    Article  CAS  Google Scholar 

  12. Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 2009, 30(28): 4996–5003

    Article  CAS  Google Scholar 

  13. Su Y, Li XQ, Tan LJ, Huang C, Mo XM. Poly(l-lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer, 2009, 50(17): 4212–4219

    Article  CAS  Google Scholar 

  14. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Electrospinning of chitosan. Macromol Rapid Comm, 2004, 25(18): 1600–1605

    Article  CAS  Google Scholar 

  15. Geng XY, Kwon O-H, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26(27): 5427–5432

    Article  CAS  Google Scholar 

  16. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromoleculars, 2002, 3(2): 232–238

    Article  CAS  Google Scholar 

  17. Zhong SP, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res, 2006, 79A(3): 456–463

    Article  CAS  Google Scholar 

  18. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res, 2005, 72B(1): 156–165

    Article  CAS  Google Scholar 

  19. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004, 25(7–8): 1289–1297

    Article  CAS  Google Scholar 

  20. Ohgo K, Zhao CH, Kobayashi M, Asakura T. Preparation of non-woven nanofibers of bombyx mori silk, samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer, 2003, 44(3): 841–846

    Article  CAS  Google Scholar 

  21. Lu TC, Sun J, Dong XQ, Chen XS, Wang Y, Jing XB. PLLA-PCys co-electrospun fibers for capture and elution of glutathione S-transferase. Sci China Ser B-Chem, 2009, 52(12): 2033–2037

    Article  CAS  Google Scholar 

  22. Jeong L, Yeo I-S, Kim HN, Yoon YI, Jang DH, Jung S Y, Min B-M, Park WH. Plasma-treated silk fibroin nanofibers for skin regeneration. Int J Biol Macromol, 2009, 44(3): 222–228

    Article  CAS  Google Scholar 

  23. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ, The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials, 2008, 29(19): 2899–2906

    Article  CAS  Google Scholar 

  24. Sahoo S, Ouyang H, Goh JC-H, Tay TE, Toh SL. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng, 2006, 12(1): 91–99

    Article  CAS  Google Scholar 

  25. Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials, 2008, 29(26): 3574–3582

    Article  CAS  Google Scholar 

  26. Corey JM, Gertz CC, Wang BS, Birrell LK, Johnson SL, Martin DC, Feldman EL. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomater, 2008, 4(4): 863–875

    Article  CAS  Google Scholar 

  27. Subramanian A, Vu D, Larsen GF, Lin HY, Preparation and evaluation of the electrospunchitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomat Sci-Polym Ed, 2005, 16(7): 861–873

    Article  CAS  Google Scholar 

  28. Zhang YZ, Venugopal JR, Turki AE, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008, 29(32): 4314–4322

    Article  CAS  Google Scholar 

  29. Huang ZM, He C L, Yang AZ, Zhang YZ, Han XJ, Yin J L, Wu QS. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res, 2006, 77A(1): 169–179

    Article  CAS  Google Scholar 

  30. Jiang HL, Hu YQ, Li Y, Zhao PC, Zhu KJ, Chen W. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release, 2005, 108(2–3): 237–243

    Article  CAS  Google Scholar 

  31. Lu Y, Jiang HL, Tu KH, Wang LQ. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. Acta Biomater, 2009, 5(5): 1562–1574

    Article  CAS  Google Scholar 

  32. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules, 2005, 6(5): 2583–2589

    Article  CAS  Google Scholar 

  33. Zhao PC, Jiang HL, Pan H, Zhu KJ, Chen WL. Biodegradable fibrous scaffolds composed of gelatin coated poly(ɛ-caprolactone) prepared by coaxial electrospinning. J Biomed Mater Res, 2007, 83A(2): 372–382

    Article  CAS  Google Scholar 

  34. Wu LL, Li H, Li S, Li XR, Yuan XY, Li XL, Zhang Y. Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J Biomed Mater Res, 2010, 92A(2): 563–574

    CAS  Google Scholar 

  35. McCann JT, Li D, Xia YN. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem, 2005, 15(7): 735–738

    Article  CAS  Google Scholar 

  36. Li D, Xia YN. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett, 2004, 4(5): 933–938

    Article  CAS  Google Scholar 

  37. Li D, McCann JT, Xia YN, Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small, 2005, 1(1): 83–86

    Article  CAS  Google Scholar 

  38. Li D, Babel A, Jenekhe SA, Xia YN. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater, 2004, 16(22): 2062–2066

    Article  CAS  Google Scholar 

  39. McCann JT, Marquez M, Xia YN. Melt coaxial electrospinning: A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett, 2006, 6(12): 2868–2872

    Article  CAS  Google Scholar 

  40. Babel A, Li D, Xia YN, Jenekhe SA. Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules, 2005, 38(11): 4705–4711

    Article  CAS  Google Scholar 

  41. Sun ZC, Zussman E, Yarin AL, Wendorff JH, Greiner A. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater, 2003, 15(22): 1929–1932

    Article  CAS  Google Scholar 

  42. Yu JH, Fridrikh SV, Rutledge GC. Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater, 2004, 16(17): 1562–1566

    Article  CAS  Google Scholar 

  43. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gaňán-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002, 295(5560): 1695–1698

    Article  CAS  Google Scholar 

  44. Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc, 2003, 125(5): 1154–1155

    Article  CAS  Google Scholar 

  45. Loscertales IG, Barrero A, Márquez M, Spretz R, Velarde-Ortiz R, Larsen G. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J Am Chem Soc, 2004, 126(17): 5376–5377

    Article  CAS  Google Scholar 

  46. Kim GH, Min TJ, Park SA, Kim WD. Coaxially electrospun micro/nanofibrous poly(ɛ-caprolactone)/eggshell-protein scaffold. Bioinsp Biomim, 2008, 3(1): 016006

    Article  Google Scholar 

  47. Li XQ, Su Y, Chen R, He CL, Wang HS, Mo XM. Fabrication and properties of core-shell structure P(LLA-CL) nanofibers by coaxial electrospinning. J Appl Polym Sci, 2009, 111(3): 1564–1570

    Article  CAS  Google Scholar 

  48. Di JC, Chen HY, Wang XF, Zhao Y, Jiang L, Yu JH, Xu RR. Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem Mater, 2008, 20(11): 3543–3545

    Article  CAS  Google Scholar 

  49. Kwak G, Lee GH, Shim SH, Yoon KB. Fabrication of light-guiding core/sheath fibers by coaxial electrospinning. Macromol Rapid Comm, 2008, 29(10): 815–820

    Article  CAS  Google Scholar 

  50. Zhang YZ, Huang ZM, Xu XJ, Lim CT, Ramakrishna S. Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 2004, 16(18): 3406–3409

    Article  CAS  Google Scholar 

  51. Kuo CC, Wang CT, Chen WC. Poly(3-hexylthiophene)/poly(methyl methacrylate) core-shell electrospun fibers for sensory applications. Macromol Symp, 2009, 279(1): 41–47

    Article  CAS  Google Scholar 

  52. He CL, Huang ZM, Han XJ. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res, 2009, 89A(1): 80–95

    Article  CAS  Google Scholar 

  53. Han XJ, Huang ZM, He CL, Liu L, Wu QS. Coaxial electrospinning of PC(shell)/PU(core) composite nanofibers for textile application. Polym Compos, 2006, 27(4): 381–387

    Article  CAS  Google Scholar 

  54. Arumuganathar S, Jayasinghe SN. Pressure assisted spinning: A versatile and economical direct fibre to scaffold spinning methodology. Macromol Rapid Comm, 2007, 28(14): 1491–1496

    Article  CAS  Google Scholar 

  55. Arumuganathar S, Jayasinghe SN. A novel direct fibre generation technique for preparing functionalized and compound scaffolds and membranes for applications within the life sciences. Biomed Mater, 2007, 2(3): 189–195

    Article  CAS  Google Scholar 

  56. Zhao Q, Xin Y, Huang ZH, Liu SD, Yang CH, Li YF. Using poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] as shell to fabricate the highly fluorescent nanofibers by coaxial electrospinning. Polymer, 2007, 48(15): 4311–4315

    Article  CAS  Google Scholar 

  57. DÍaz JE, Barrero A, Márquez M, Loscertales IG. Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater, 2006, 16(16): 2110–2116

    Article  Google Scholar 

  58. Larsen G, Spretz R, Velarde-Ortiz R. Use of coaxial gas jackets to stablilize Taylor cone of volatile solutions and to induce particle-to-fiber transitions. Adv Mater, 2004, 16(2): 166–169

    Article  CAS  Google Scholar 

  59. Chen SL, Hou HQ, Hu P, Wendorff JH, Greiner A, Agarwal S. Polymeric nanosprings by bicomponent electrospinning. Macromol Mater Eng, 2009, 294(4): 265–271

    Article  CAS  Google Scholar 

  60. Arinstein A, Avrahami R, Zussman E. Buckling behaviour of electrospun microtubes: A simple theoretical model and experimental observations. J Phys D-Appl Phys, 2009, 42(1): 015507

    Article  Google Scholar 

  61. López-Herrera JM, Barrero A, López A, Loscertales IG, Márquez M. Coaxial jets generated from electrified Taylor cones. Scaling laws. J Aerosol Sci, 2003, 34(5): 535–552

    Article  Google Scholar 

  62. Hu YY, Huang ZM. Numerical study on two-phase flow patterns in coaxial electrospinning. J Appl Phys, 2007, 101(8): 084307

    Article  Google Scholar 

  63. Chan KHK, Kotaki M. Fabrication and morphology control of poly(methyl methacrylate) hollow structures via coaxial electrospinning. J Appl Polym Sci, 2009, 111(1): 408–416

    Article  CAS  Google Scholar 

  64. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release, 2005, 108(1): 33–42

    Article  CAS  Google Scholar 

  65. Xu XL, Zhuang XL, Chen XS, Wang XR, Yang LX, Jing XB. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Comm, 2006, 27(19): 1637–1642

    Article  CAS  Google Scholar 

  66. Xu XL, Chen XS, Ma PA, Wang XR, Jing XB, The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm, 2008, 70(1): 165–170

    Article  CAS  Google Scholar 

  67. Xu XL, Chen XS, Wang ZF, Jing XB. Ultrafine PEG-PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur J Pharm Biopharm, 2009, 72(1): 18–25

    Article  CAS  Google Scholar 

  68. Su Y, Li XQ, Liu SP, Mo XM, Ramakrishna S. Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloid Surface B, 2009, 73(2): 376–381

    Article  CAS  Google Scholar 

  69. Yang Y, Li XH, Cui WG, Zhou SB, Tan R, Wang CY. Structural stability and release profiles of proteins from core-shell poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. J Biomed Mater Res, 2008, 86A(2): 374–385

    Article  CAS  Google Scholar 

  70. Yang Y, Li XH, Qi MB, Zhou SB, Weng J. Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur J Pharm Biopharm, 2008, 69(1): 106–116

    Article  CAS  Google Scholar 

  71. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005, 6(4): 2017–2024

    Article  CAS  Google Scholar 

  72. Li XQ, Su Y, Zhou X, Mo XM., Distribution of sorbitan monooleate in poly(l-lactide-co-ɛ-caprolactone) nanofibers from emulsion electrospinning. Colloid Surface B, 2009, 69(2): 221–224

    Article  CAS  Google Scholar 

  73. Liao YL, Zhang LF, Gao Y, Zhu ZT, Fong H. Preparation, characterization, and encapsulation/release studies of a composite nanofiber mat electrospun from an emulsion containing poly(lactic-co-glycolic acid). Polymer, 2008, 49(24): 294–5299

    Article  Google Scholar 

  74. Li XR, Zhang H, Li H, Tang GW, Zhao YH, Yuan XY. Self-accelerated biodegradation of electrospun poly(ethylene glycol)-poly(l-lactide) membranes by loading proteinase K. Polym Degrad Stab, 2008, 93(3): 618–626

    Article  CAS  Google Scholar 

  75. Angeles M, Cheng HL, Velankar SS. Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polym Adv Technol, 2008; 19(7): 728–733

    Article  CAS  Google Scholar 

  76. Bazilevsky AV, Yarin AL, Megaridis CM. Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir, 2007, 23(5): 2311–2314

    Article  CAS  Google Scholar 

  77. Wei M, Lee J, Kang B, Mead J. Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Comm, 2005, 26(14): 1127–1132

    Article  CAS  Google Scholar 

  78. Wei M, Kang B, Sung C, Mead J. Core-sheath structure in electrospun nanofibers from polymer blends. Macromol Mater Eng, 2006, 291(11): 1307–1314

    Article  CAS  Google Scholar 

  79. Li XH, Shao CL, Liu YC. A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning. Langmuir, 2007, 23(22): 10920–10923

    Article  CAS  Google Scholar 

  80. Kuo CC, Wang CT, Chen WC. Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromol Mater Eng, 2008, 293(12): 999–1008

    Article  CAS  Google Scholar 

  81. Na HN, Liu XW, Sun H, Zhao YH, Zhao C, Yuan XY. Electrospinning of ultrafine PVDF/PC fibers from their dispersed solutions. J Polym Sci B-Polym Phys, 2010, 48(3): 372–380

    Article  CAS  Google Scholar 

  82. Na HN, Liu XW, Li JQ, Zhao YH, Zhao C, Yuan XY. Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC. Polymer, 2009, 50(26): 6340–6349

    Article  CAS  Google Scholar 

  83. He CL, Huang ZM, Han XJ, Liu L, Zhang HS, Chen LS. Coaxial electrospun poly(l-lactic acid) ultrafine fiber for sustained drug delivery. J Macromol Sci-Phys, 2006, 45(4): 515–524

    Article  CAS  Google Scholar 

  84. Jiang HL, Hu YQ, Zhao PC, Li Y, Zhu KJ. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res, 2006, 79B(1): 50–57

    Article  CAS  Google Scholar 

  85. Jo E, Lee S, Kim KT, Won YS, Kim H-S, Cho EC, Jeong U. Coresheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery. Adv Mater, 2009, 21(9): 968–972

    Article  CAS  Google Scholar 

  86. Qi HX, Hu P, Xu J, Wang AJ. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules, 2006, 7(8): 2327–2330

    Article  CAS  Google Scholar 

  87. Nie HM, Soh BW, Fu Y-C, Wang C-H. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnology and Bioengineering. Biotechnol Bioeng, 2008, 99(1): 223–234

    Article  CAS  Google Scholar 

  88. Arumuganathar S, Irvine S, McEwan JR, Jayasinghe SN. A novel direct aerodynamically assisted threading methodology for generating biologically viable microthreads encapsulating living primary cells. J Appl Polym Sci, 2008, 107(2): 1215–1225

    Article  CAS  Google Scholar 

  89. Yi F, LaVan DA. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci, 2008, 8(9): 803–806

    Article  CAS  Google Scholar 

  90. Li S, Sun B, Li XR, Yuan XY. Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(l-lactide-co-epsilon-caprolactone) fibrous membranes and their cytocompatibility in vitro. J Biomat Sci-Polym Ed, 2008, 19(2): 245–258

    Article  Google Scholar 

  91. Li H, Zhao CG, Wang ZX, Zhang H, Yuan XY, Kong D L. Controlled release of PDGF-bb by coaxial electrospun dextran/Poly (l-lactide-co-ɛ-caprolactone) fibers with an ultrafine core/shell structure. J Biomat Sci-Polym Ed, DOI: 10.1163/156856209X445302

  92. Liao IC, Chew SY, Leong KW. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine, 2006, 1(4): 465–471

    Article  CAS  Google Scholar 

  93. Fu YC, Nie HM, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/Hap composite scaffolds loaded with BMP-2. Biotechnol Bioeng, 2008, 99(4): 996–1006

    Article  CAS  Google Scholar 

  94. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release, 2003, 89(2): 341–353

    Article  CAS  Google Scholar 

  95. Liang DH, Luu YK, Kim K, Hsiao BS, Hadjiargyrou M, Chu B. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res, 2005, 33(19): e170

    Article  Google Scholar 

  96. Jiang HL, Zhao PC, Zhu KJ. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method. Macromol Biosci, 2007, 7(4): 517–525

    Article  CAS  Google Scholar 

  97. Wang M, Yu JH, Kaplan DL, Rutledge GC. Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules, 2006, 39(3): 1102–1107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhao, C., Zhao, Y. et al. Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci. China Chem. 53, 1246–1254 (2010). https://doi.org/10.1007/s11426-010-3180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3180-3

Keywords

Navigation