Skip to main content
Log in

Vertical ionization energies of halogen anions in solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Based on the constrained equilibrium state theory, the nonequilibrium solvation energy is derived in the framework of the continuum model. The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption. The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X (X = Cl, Br, I, Cl2, Br2, I2) in aqueous solution. According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum, our final estimated vertical ionization energies in solution are very close to the experimental observations, while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradforth SE, Jungwirth P. Excited states of iodide anions in water: a comparison of the electronic structure in clusters and in bulk solution. J Phys Chem A, 2002, 106: 1286–1298

    Article  CAS  Google Scholar 

  2. Pathak AK, Mukherjee T, Maity DK. Microhydration of X gas (X = Cl, Br, and I): a theoretical study on X·nH2O clusters (n=1–8). J Phys Chem A, 2008, 112: 744–751

    Article  CAS  Google Scholar 

  3. Kammrath A, Verlet JRR, Bragg AE, Griffin GB, Neumark DM. Dynamics of charge-transfer-to-solvent precursor states in I (water)n (n=3–10) clusters studied with photoelectron imaging. J Phys Chem A, 2005, 109: 11475–11483

    Article  CAS  Google Scholar 

  4. Zhan CG, Dixon DA. The nature and absolute hydration free energy of the solvated electron in water. J Phys Chem B, 2003, 107: 4403–4417

    Article  CAS  Google Scholar 

  5. Li XY, Wang QD, Wang JB, Ma JY, He FC, Fu KX. Nonequilibrium solvation energy by means of constrained equilibrium thermodynamics and its application to self-exchange electron transfer reactions. Phys Chem Chem Phys, 2010, 12: 1341–1350

    Article  CAS  Google Scholar 

  6. Li XY, Wang JB, Ma JY, Fu KX, He FC. Thermodynamics for nonequilibrium solvation and numerical evaluation of solvent reorganization energy. Sci China Ser B-Chem, 2008, 51: 1246–1256

    Article  CAS  Google Scholar 

  7. Li XY, He FC, Fu KX, Liu WJ. Solvation energy of nonequilibrium polarization: old question, new answer. J Theor Comput Chem, 2010, 9,Supp. 1: 23–37

    Article  Google Scholar 

  8. Zhu Q, Liu JF, Fu KX, Han KL, Li XY. Explicit solvent model for spectral shift of acrolein and simulation with molecular dynamics. Chin Sci Bull, 2006, 51: 2951–2958

    Article  CAS  Google Scholar 

  9. Marcus, RA. Free energy of nonequilibrium polarization systems. 4. A formalism based on the nonequilibrium dielectric displacement. J Phys Chem, 1994, 98: 7170–7174

    Article  CAS  Google Scholar 

  10. Markovich G, Pollack S, Giniger R, Cheshnovsky O. The solvation of iodine anions in water clusters: pes studies. Z Phys D, 1993, 26: 98–100

    Article  CAS  Google Scholar 

  11. Markovich G, Giniger R, Levin M, Cheshnovsky O. Photoelectron spectroscopy of iodine anion solvated in water clusters. J Chem Phys, 1991, 95: 9416–9419

    Article  CAS  Google Scholar 

  12. Markovich G, Pollack S, Giniger R, Cheshnovsky O. Photoelectron spectroscopy of Cl, Br, and I solvated in water clusters. J Chem Phys, 1994, 101: 9344–9353

    Article  CAS  Google Scholar 

  13. Markovich G, Perera L, Berkowitz ML, Cheshnovsky O. The solvation of Cl, Br, and I in acetonitrile clusters: photoelectron spectroscopy and molecular dynamics simulations. J Chem Phys, 1996, 105: 2657–2685

    Article  Google Scholar 

  14. Takahashi N, Sakai K, Tanida H, Watanabe I. Vertical ionization potentials and ctts energies for anions in water and acetonitrile. Chem Phys Lett, 1995, 246: 183–186

    Article  CAS  Google Scholar 

  15. Delahay P. Photoelectron emission spectroscopy of aqueous solutions. Acc Chem Res, 1982, 15: 40–45

    Article  CAS  Google Scholar 

  16. Watanabe I, Flanagan JB, Delahay P. Vacuum ultraviolet photoelectron emission spectroscopy of water and aqueous solutions. J Chem Phys, 1980, 73: 2057–2062

    Article  CAS  Google Scholar 

  17. Aguilar MA, Olivares del Valle FJ, Tomasi J. Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation. J Chem Phys, 1993, 98: 7375–7384

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03 (Revision-B.01), Gaussian Inc, Pittsburgh PA, 2003

    Google Scholar 

  19. George DP, Robney JB. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys, 1982, 76: 1910–1918

    Article  Google Scholar 

  20. Dunning TH, Jr. Gaussian basis sets for use in correlated molecules calculations. I. The atoms boron through neon and hydrogen. J Chem Phys, 1989, 90:1007–1023

    Article  CAS  Google Scholar 

  21. Hughes SR, Kaldor U. The fock-space coupled-cluster method: electron affinities of the five halogen elements with consideration of triple excitations. J Chem Phys, 1993, 99: 6773–6776

    Article  CAS  Google Scholar 

  22. Godbout N, Salahub DR, Andzelm J, Wimmer E. Optimization of gaussian-type basis sets for local spin density functional calculations. part I. Boron through neon, optimization technique and validation. Can J Chem, 1992, 70: 560–571

    Article  CAS  Google Scholar 

  23. Berry RS, Reimann CW. Absorption spectrum of gaseous F and electron affinities of the halogen atoms. J Chem Phys, 1963, 38: 1540–1543

    Article  CAS  Google Scholar 

  24. Chupka WA, Berkowitz J. Electron affinities of halogen diatomic molecules as determined by endoergic charge transfer. J Chem Phys, 1971, 55: 2724–2733

    Article  CAS  Google Scholar 

  25. Latimer WM, Pitzer KS, Slansky CM. The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. J Chem Phys, 1939, 7: 108–111

    Article  CAS  Google Scholar 

  26. Aguilar MA, Olivares del Valle FJ, Tomasi J. Nonequilibrium solvation: an ab initio quantum-mechanical method in the continuum cavity model approximation. J Chem Phys, 1993, 98: 7375–7384

    Article  CAS  Google Scholar 

  27. ZHAN CG, Chipman M. Cavity size in reaction field theory. J Chem Phys, 1998, 109: 10543–10558

    Article  CAS  Google Scholar 

  28. Wong MW, Wiberg KB, Frisch MJ. Ab initio calculation of molar volumes: comparing with experiment and use in solvation models. J Comput Chem, 1995, 16: 385–394

    Article  CAS  Google Scholar 

  29. Bader RFW, Carroll MT, Cheeseman JR, Chang C. Properties of atoms in molecules: atomic volumes. J Am Chem Soc, 1987, 109: 7968–7979

    Article  CAS  Google Scholar 

  30. Dean JA. Lange’s Handbook of Chemistry. 15th ed. New York: Mc Graw-Hill, 1999

    Google Scholar 

  31. Hupp JT, Dong Y, Blackbourn RL, Lu H. Does Marcus-Hush theory really work? The solvent dependence of intervalence charge-transfer energetics in (NH3) RuII5 -4,4′-bipyridine-RuIII(NH3)s5+ in the limit of infinite dilution. J Phys Chem, 1993, 97(13): 3278–3282

    Article  CAS  Google Scholar 

  32. Vath P, Zimmt MB, Matyushov DV, Voth GA. A failure of continuum theory: temperature dependence of the solvent reorganization energy of electron transfer in highly polar solvents. J Phys Chem B, 1999, 103: 9130–9140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Zhu or XiangYuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Zhu, Q., Wang, X. et al. Vertical ionization energies of halogen anions in solution. Sci. China Chem. 53, 1316–1321 (2010). https://doi.org/10.1007/s11426-010-3177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3177-y

Keywords

Navigation