Skip to main content
Log in

Synthesis and characterization of a strong-fluorescent Eu-containing hydrotalcite-like compound

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel strong-fluorescent Eu-containing hydrotalcite-like compound (Eu-HTlc) was synthesized using the coprecipitation method, in which aluminum(III) was partially substituted by Europium (III) in the hydrotalcite-like layers, and thenoyltrifluoroacetone, 1,10-phenanthroline were dispersed into the anions in the interlayer region. The sample was characterized by XRD, XPS, FT-IR, ICP, TG-DSC, TEM and fluorescence spectra, and its composition and structure were determined. The results indicated that the sample exhibited a characteristic red light (614 nm). The fluorescent lifetime and fluorescence quantum yield of Eu-HTlc were measured to be respectively 893 μs and 66.44%, higher than those of Eu(III)-thenoyltrifluoroacetone-1,10-phenanthroline complex [Eu(TTA)3phen]. The result of TG-DSC measurement showed the enhanced thermal stability of Eu-HTlc compared with that of MgAl-LDHs and Eu(TTA)3phen. With excellent photoluminescent property and thermal stability, low contents of rare earth ions and ligands, the Eu-HTlc may become one of the novel fluorescent materials with potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canavi F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today, 1991, 11(2): 173–301

    Article  Google Scholar 

  2. Vaccari A. Preparation and catalytic properties of cationic and anionic clays. Catal Today, 1998, 41: 53–71

    Article  CAS  Google Scholar 

  3. Weitkamp J, Hunger M, Rymsa U. Base catalysis on microporous and mesoporous materials: recent progress and perspectives. Micro-porous Mesoporous Mater, 2001, 48: 255–270

    Article  CAS  Google Scholar 

  4. Khan AI, O’Hare DJ. Intercalation chemistry of layered double hydroxides: recent developments and applications. Mater Chem, 2002, 12: 3191–3198

    Article  CAS  Google Scholar 

  5. Sels BF, De Vos DE, Jacobs PA. Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev, 2001, 43: 443–488

    Article  CAS  Google Scholar 

  6. Costantino U, Ambrogi V, Nocchetti M, Perioli L. Hydrotalcite-like compounds: versatile layered hosts of molecular anions with biological activity. Micropor Mesopor Mater, 2008, 107(1–2): 149–160

    Article  CAS  Google Scholar 

  7. Choy JH, Jung JS, Oh JM, Park M, Jeong J, Kang YK, Han OJ. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 2004, 25: 3059–3064

    Article  CAS  Google Scholar 

  8. Choy JH., Choi SJ, Oh JM, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci, 2007, 36:122–132

    Article  CAS  Google Scholar 

  9. Aisawa S, Sasaki S, Takahashi S, Hirahara H, Nakayama H, Narita E. Intercalation of amino acids and oligopeptides into Zn-Al layered double hydroxide by coprecipitation reaction. J Phys Chem Solids, 2006, 67: 920–925

    Article  CAS  Google Scholar 

  10. Ambrogi V, Fardella G, Grandolini G, Perioli L. Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents-I. Intercalation and in vitro release ofibuprofen. Int J Pharm, 2001, 220: 23–32

    Article  CAS  Google Scholar 

  11. Mignani A, Scavetta E, Tonelli D. Electrodeposited glucose oxidase/anionic clay for glucose biosensors design. Anal Chim Acta, 2006, 577:98–106

    Article  CAS  Google Scholar 

  12. Mousty C, Vieille L, Cosnier S. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor. Biosensors Bioelectronics, 2007, 22(8): 1733–1738

    Article  CAS  Google Scholar 

  13. Fudala Á, Pálinkó I, Kiricsi I. Preparation and characterization of hybrid organic-inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite. Inorg Chem, 1999, 38(21): 4653–4658

    Article  CAS  Google Scholar 

  14. Tammaro L, Costantino U, Bolognese A, Sammartino G, Marenzi G, Calignano A, Tete S, Mastrangelo F, Califano L, Vittoria V. Nanohybrids for controlled antibiotic release in topical applications. Int J. Antimicrob Agents, 2007, 29(4): 417–423

    Article  CAS  Google Scholar 

  15. Weissman SI. Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys, 1942, 10: 214–217

    Article  CAS  Google Scholar 

  16. Halverson F, Brinen JS, Leto JR. Photoluminescence of lanthanide complexes. III. synergic agent complexes involving extended chromophores. J Chem Phys, 1964, 41: 2752–2759

    Article  CAS  Google Scholar 

  17. Ci YX, Lan ZH. Fluorescence enhancement of the europium(III)-thenoyltrifluoroacetone-trioctylphosphine oxide ternary complex by gadolinium(III) and its application to the determination of europium( III). Analyst, 1988, 113: 1453–1457

    Article  CAS  Google Scholar 

  18. Li WL, Yu G, Zhao X. The preparation and luminescence of Eu(III) activated o-phenanthroline containing Gd(III) succinate phosphors. J Alloys Compd, 1994, 206: 195–199

    Article  CAS  Google Scholar 

  19. Zhong GL, Yang KZ. Luminescence enhancement effect of Y(TTA)3Phen on Europium(III) and intermolecular energy transfer in Langmuir-Blodgett films. Langmuir, 1998, 14(19): 5502–5506

    Article  CAS  Google Scholar 

  20. Wang LH, Wang W, Zhang WG, Kang ET, Huang W. Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(III)-acrylate-β-diketonate complex monomers and methyl methacrylate. Chem Mater, 2000, 12(8): 2212–2218

    Article  CAS  Google Scholar 

  21. Piguet C, Buenzli JCG, Bernardinelli G, Hopfgartner G, Williams AF. Self-assembly and photophysical properties of lanthanide dinuclear triple-helical complexes. J Am Chem Soc, 1993, 115(18): 8197–8206

    Article  CAS  Google Scholar 

  22. Qian DJ, Yang KZ, Nakahara H, Fukuda K. Monolayers of europium complexes with different long chains and β-diketonate ligands and their emission properties in Langmuir-Blodgett films. Langmuir, 1997, 13: 5925–5932

    Article  CAS  Google Scholar 

  23. Campos RA, Kovalev IP, Guo Y, Wakili N, Skotheim T. Red electroluminescence from a thin organometallic layer of europium. J Appl Phys, 1996, 80: 7144–7150

    Article  CAS  Google Scholar 

  24. Gao XC, Cao H, Huang CH, Li BG, Umitani S. Electroluminescence of a novel terbium complex. Appl Phys Lett, 1998, 72: 2217–2219

    Article  CAS  Google Scholar 

  25. Tsutsui T, Takada N, Saito S, Ogino E. Sharply directed emission in organic electroluminescent diodes with an opticalmicrocavity structure. Appl Phys Lett, 1994, 65: 1868–1870

    Article  CAS  Google Scholar 

  26. Stumpf T, Curtius H, Walther C, Dardenne K, Ufer K, Fanghaenel T. Incorporation of Eu(III) into Hydrotalcite: a TRLFS and EXAFS Study. Environ Sci Technol, 2007, 41(9): 3186–3191

    Article  CAS  Google Scholar 

  27. Sandra G, Martyn P, Rute A, Sá F, Luís D, Carlos TM, Santos IS, Goncüalves. Immobilization of lanthanide ions in a pillared layered double hydroxide. Chem Mater, 2005, 17: 5803–5809

    Google Scholar 

  28. Liu JC, Lian Sh X, Zhu Al, Li QH, Liu LM, Zeng LH. Luminescent properties and selectivity IR adsorption of Eu-doped hydrotalcite like compounds. Chi J Lumin, 2007, 28(1): 67–73

    Google Scholar 

  29. Zhang WG, Chen H. Preparation and characterization of a novel strong-fluorescent hydrotalcite-like compound (Al-HTLc). Science in China Series B: Chem, 2008, 51(9): 834–841

    Article  CAS  Google Scholar 

  30. Chen H, Zhang WG. Study on the strong-fluorescent Zn-containing hydrotalcite-like compound. Acta Chim Sinica, 2008, 66(4): 481–486

    CAS  Google Scholar 

  31. Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner, 1983, 31: 305–311

    Article  CAS  Google Scholar 

  32. Wang Ch Y, Yang ZJ, Li Y, Gong LW, Zhao GW. Preparation of thin films of ternary complex of Europium with 2-thenoyltrifluoroacetone and o-phenanthroline. Phys Stat Sol(a), 2002, 191(1): 117–124

    Article  CAS  Google Scholar 

  33. Fatiha BDS, Su BL, Noureddine B. Removal of evans blue by using nickel-iron layered double hydroxide (LDH) nanoparticles: effect of hydrothermal treatment temperature on textural properties and dye adsorption. Macromol Symp, 2008, 273: 125–134

    Article  Google Scholar 

  34. Gupta S, Agarwal DD, Banerjee S. Synergistic combination of metal stearates and β-diketones with hydrotalcites in poly(vinyl chloride) stabilization. J Appl Polym Sci, 2009, 112: 1056–1062

    Article  CAS  Google Scholar 

  35. Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna CJ. IR characteristics of hydrotalcite-like compounds. Phys Chem Miner, 1985, 12: 34–38

    CAS  Google Scholar 

  36. Gou GJ, Ma PH, Chu MX. Dynamics of intercalation of B4O5 (OH) 2−4 anion into layered double hydroxides intercalated by Cl anion. Chem J Chi Univ, 2005, 26(3): 497–502

    CAS  Google Scholar 

  37. Kagunya W, Baddor-Hadjean R, Kooli F, Jones W. Vibrational modes in layered double hydroxides and their calcined derivatives. Chem Phys, 1998, 236: 225–234

    Article  CAS  Google Scholar 

  38. Chen SP, Meng XX, Shuai Q, Jiao BJ, Gao SL, Shi QZ. Thermochemistry of Europium and dithiocarbamate complex Eu(C5H8NS2)3−(C12H8N2). J Therm Analy Calori, 2006, 86(3): 767–774

    Article  CAS  Google Scholar 

  39. Xiao LR, Gao F, Tang JY, Zhang WG. Study on the Eu-containing coordination polymer I. structural characterization of Eu (III)-thienylt rifluroacetone-poly(styrene-acrylic acid). Spectroscopy Spectral Analysis, 2004, 24(6): 756–761

    CAS  Google Scholar 

  40. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E A. A Reexamination of hydrotalcite crystal chemistry. J Phys Chem, 1996, 100(20): 8527–8534

    Article  CAS  Google Scholar 

  41. Lee WF, Lee S Ch. Effect of hydrotalcite on the swelling and mechanical behaviors for the hybrid nanocomposite hydrogels based on gelatin and hydrotalcite. J Applied Polymer Sci, 2006, 100: 500–507

    Article  CAS  Google Scholar 

  42. Zhang L, Shen YH, Xie AJ, Li Sh K, Jin BK, Zhang QF. One-step synthesis of monodisperse silver nanoparticles beneath Vitamin E langmuir monolayers. J Phys Chem B, 2006, 110: 6615–6620

    Article  CAS  Google Scholar 

  43. Hu J, Zhao H, Zhang QJ, He WD. Synthesis and characterization of submicron PMMA particles containing rare earth ions on the surface. J Appl Polym Sci, 2003, 89: 1124–1131

    Article  CAS  Google Scholar 

  44. Kirby AF, Richardson FS. Detailed analysis of the optical absorption and emission spectra of europium(3+) in the trigonal (C3) Eu(DBM)3.H2O system. J Phys Chem, 1983, 87: 2544–2556

    Article  CAS  Google Scholar 

  45. Chen G Zh, Huang X Zh, Zheng Zh Zh. Fluorescence Analytical Method. 2nd ed. Beijing: Science Press, 1990. 15–17

    Google Scholar 

  46. de Mello BJC, Wittmann HF, Friend RH. An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater, 1997, 9(3): 230–232

    Article  Google Scholar 

  47. Newman SP, Jones W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J Chem, 1998, 105–115

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenGong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Zhang, W. Synthesis and characterization of a strong-fluorescent Eu-containing hydrotalcite-like compound. Sci. China Chem. 53, 1273–1280 (2010). https://doi.org/10.1007/s11426-010-3167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3167-0

Keywords

Navigation