Skip to main content
Log in

Synthesis of a magnetic micro/nano Fe x O y -CeO2 composite and its application for degradation of hexachlorobenzene

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A micrometer-sized nanostructured, magnetic, ball-like Fe x O y -CeO2 composite was synthesized through an ethylene-glycol mediated process. The synthesized samples were characterized by scanning electron microscopy combined with energydisperse X-ray analysis, transmission electron microscopy and X-ray powder diffraction. In the synthesis system, polyethylene glycol (PEG) and urea were found to play significant roles in the formation of the micrometer-sized spherical architecture of the precursor. The details of morphology and particle size could be changed with the initial concentration of Fe(NO3)3·9H2O and Ce(NO3)3·6H2O as the reactants. The magnetic Fe x O y -CeO2 composite with a similar morphology was readily obtained by calcination from the precursor. The characterization of transmission electron microscopy showed the calcined ball-like architecture was a highly porous structure consisting of many nanoparticles. Because of the micrometer-sized nanostructure and the multi-components as well as the magnetism, the as-obtained Fe x O y -CeO2 composite showed better activity and potentially easy recovery for the harmless degradation of hexachlorobenzene (HCB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage, 2009, 29: 2587–2595

    Article  CAS  Google Scholar 

  2. Fang Z, Tang KB, Shen GZ, Chen D, Kong R, Lei SJ. Self-assembled ZnO 3D flowerlike nanostructures. Mater Lett, 2006, 60: 2530–2533

    Article  CAS  Google Scholar 

  3. Chen HM, He JH, Zhang CB, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J Phys Chem C, 2007, 111: 18033–18038

    Article  CAS  Google Scholar 

  4. Yuan JK, Laubernds K, Zhang QH, Suib SL. Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres. J Am Chem Soc, 2003, 125: 4966–4967

    Article  CAS  Google Scholar 

  5. Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ. Hydrothermal synthesis and pseudocapacitance properties of mno2 nanostructures. J Phys Chem B, 2005, 109: 20207–20214

    Article  CAS  Google Scholar 

  6. Li XL, Li WJ, Chen XY, Shi CW. Hydrothermal synthesis and characterization of orchid-like MnO2 nanostructures, J Cryst Growth, 2006, 297: 387–389

    Article  CAS  Google Scholar 

  7. Cao AM, Hu JS, Liang HP, Wan LJ. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in Lithium-ion batteries. Angew Chem Int Ed, 2005, 44: 4391–4395

    Article  CAS  Google Scholar 

  8. Yan CL, Xue DF. Novel self-assembled MgO nanosheet and its precursors. J Phys Chem B, 2005, 109: 12358–12361

    Article  CAS  Google Scholar 

  9. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater, 2006, 18: 2426–2431

    Article  CAS  Google Scholar 

  10. Cao AM, Hu JS, Liang HP, Song WG, Wan LJ, He XL, Gao XG, Xia SH. Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. J Phys Chem B, 2006, 110: 15858–15863

    Article  CAS  Google Scholar 

  11. Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater, 2007, 19: 1648–1655

    Article  CAS  Google Scholar 

  12. Zeng H, Sun SH. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater, 2008, 18: 391–400

    Article  CAS  Google Scholar 

  13. Alonso F, Beletskaya IP, Yus M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev, 2002, 102: 4009–4091

    Article  CAS  Google Scholar 

  14. Hooker PD, Klabunde KJ. Destructive adsorption of carbon tetrachloride on iron(III) oxide. Environ Sci Technol, 1994, 28: 1243–1247

    Article  CAS  Google Scholar 

  15. Khaleel A, Al-Nayli A. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene. Appl Catal B: Environ, 2008, 80: 176–184

    Article  CAS  Google Scholar 

  16. Morlando R, Manahan SE, Larsen DW. Iron-catalyzed cocurrent flow destruction and dechlorination of chlorobenzene during gasification. Environ Sci Technol, 1997, 31: 409–415

    Article  CAS  Google Scholar 

  17. Ma XD, Zheng MH, Liu WB, Yong Q, Zhao XR, Zhang B. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides. J Hazard Mater, 2005, 127: 156–162

    Article  CAS  Google Scholar 

  18. Xue XF, Hanna K, Abdelmoula M, Deng NS. Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Applied Catalysis B: Environ, 2009, 89: 432–440

    Article  CAS  Google Scholar 

  19. Matsuda H, Ito T, Kuchar D, Tanahashi N, Watanabe C. Enhanced dechlorination of chlorobenzene and in situ dry sorption of resultant Cl-compounds by CaO and Na2CO3 sorbent beds incorporated with Fe2O3. Chemosphere, 2009, 74: 1348–1353

    Article  CAS  Google Scholar 

  20. Öberg T, Öhrström T, Bergströ J. Metal catalyzed formation of chlorinated aromatic compounds: a study of the correlation pattern in incinerator fly ash. Chemosphere, 2007, 67: S185–S190

    Article  Google Scholar 

  21. Trovarelli A. Catalysis reviews-science and engineering. Catal Rev Sci Eng, 1996, 38: 439–520

    Article  CAS  Google Scholar 

  22. Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics, 1996, 83: 1–16

    Article  CAS  Google Scholar 

  23. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. The utilization of ceria in industrial catalysis. Catal Today, 1999, 50: 353–367

    Article  CAS  Google Scholar 

  24. Liu Y, Sun DZ. Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. J Hazard Mater, 2007, 143: 448–454

    Article  CAS  Google Scholar 

  25. Massa P, Dafinov A, Cabello FM, Fenoglio R. Catalytic wet peroxide oxidation of phenolic solutions over Fe2O3/CeO2 and WO3/CeO2 catalyst systems. Catal Commun, 2008, 9: 1533–1538

    Article  CAS  Google Scholar 

  26. Larcher D, Sudant G, Patrice R, Tarascon JM. Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem Mater, 2003, 15: 3543–3551

    Article  CAS  Google Scholar 

  27. Cheng Y, Wang YS, Zheng YH, Qin Y. Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation. J Phys Chem B, 2005, 109: 11548–11551

    Article  CAS  Google Scholar 

  28. Park J, Privman V, Matijević E. Model of formation of monodispersed colloids. J Phys Chem B, 2001, 105: 11630–11635

    Article  CAS  Google Scholar 

  29. Gao XB, Wang W, Liu X. Low-temperature dechlorination of hexachlorobenzene on solid supports and the pathway hypothesis. Chemosphere, 2008, 71: 1093–1099

    Article  CAS  Google Scholar 

  30. Miyoshi K, Nishio T, Yasuhara A, Morita M, Shibamoto T. Detoxification of hexachlorobenzene by dechlorination with potassium-sodium alloy. Chemosphere, 2004, 55: 1439–1446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GuiJin Su or MingHui Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, M., Su, G., Zheng, M. et al. Synthesis of a magnetic micro/nano Fe x O y -CeO2 composite and its application for degradation of hexachlorobenzene. Sci. China Chem. 53, 1266–1272 (2010). https://doi.org/10.1007/s11426-010-3164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3164-3

Keywords

Navigation