Skip to main content
Log in

A simple solvothermal route towards the morphological control of ZnO and tuning of its optical and photocatalytic properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

ZnO nanoparticles with different morphologies were solvothermally synthesized by controlling the alkali (sodium hydroxide) concentration in an isopropanol solution. The products were characterized by means of powder X-ray diffraction, UV-visible absorption spectra, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. The morphologies of the formed ZnO nanocrystals were dependent on the concentration of the alkali, and with increases of sodium hydroxide concentration, the ZnO nanocrystals evolved from rod to hexagonal bipyramid, and then to a flower-like nanostructure. The flower-like nanostructure resulted from the etching of the hexagonal bipyramid by the excess alkali. The photoluminescence and photocatalytic properties of the prepared ZnO were investigated. The difference of green emission among the ZnO nanocrystals indicated that a higher sodium hydroxide concentration led to a higher level of defects. The size, the surface structure and defects in the ZnO nanocrystals affected its photo-degradation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katoh R, Furube A, Hara K, Murata S, Sugihara H, Arakawa H, Tachiya M. Efficiences of electron injection from excited sensitizer dyes to nanocrystalline ZuO films as studied by near-IR optical absorption of injected electrons. J Phys Chem B, 2002, 106(50): 12957–12964

    Article  CAS  Google Scholar 

  2. Dong LF, Cui ZL, Zhang ZK. Gas sensing properties of nano-ZnO pre pared by arc plasma method. Nanostruct Mater, 1997, 8(7): 815–823

    Article  CAS  Google Scholar 

  3. Chadwick AV, Russell NV, Whitham AR, Wilson A. Nanocrystalline metal oxide gas sensors. Sensor Actuat B, 1994, 18(1–3): 99–102

    Article  CAS  Google Scholar 

  4. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897–1899

    Article  CAS  Google Scholar 

  5. Kong XY, Wang ZL. Spontaneous polarization-inducednanohelixes, nanosprings and nanorings of piezoelectric nanobelts. Nano Lett, 2003, 3(12): 1625–1631

    Article  CAS  Google Scholar 

  6. Minne SC, Manalis SR, Quate CF. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett, 1995, 67(26): 3918–3920

    Article  CAS  Google Scholar 

  7. Ressler T, Kniep BL, Kasatkin I, Schlög R. The microstructure of copper zinc oxide catalysts: bridging the materials gap. Angew Chem Int Ed, 2005, 44, 4704–4707

    Article  CAS  Google Scholar 

  8. Service RF. Materials science—will UV lasers beat the blues. Science, 1997, 276(5314): 895–895

    Article  CAS  Google Scholar 

  9. Guo L, Ji YL, Xu H. Regularly shaped, single-crystalline ZnO nanorodswith wurtzite structure. J Am Chem Soc, 2002, 124(50): 14864–14865

    Article  CAS  Google Scholar 

  10. Yu HD, Zhang ZP, Han MY, Hao XT, Zhu FR. A general lowtemperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J Am Chem Soc, 2005, 127(8): 2378–2379

    Article  CAS  Google Scholar 

  11. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE. Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem Mater, 2001, 13(12): 4395–4398

    Article  CAS  Google Scholar 

  12. Sun Y, Fuge GM, Fox NA, Riley DJ, Ashfold MNR. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv Mater, 2005, 17(20): 2477–2481

    Article  CAS  Google Scholar 

  13. Chen SJ, Liu YC, Shao CL, Mu R, Lu YM, Zhang JY, Shen DZ, Fan XW. Structural and optical properties of uniform ZnO nanosheets. Adv Mater, 2005, 17(5): 586–590

    Article  CAS  Google Scholar 

  14. Dai Y, Zhang Y, Li QK, Nan CW. Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem Phys Lett, 2002, 358(1–2): 83–86

    Article  CAS  Google Scholar 

  15. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

    Article  CAS  Google Scholar 

  16. Alivisatos AP. Semiconductor cluster, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937

    Article  CAS  Google Scholar 

  17. Yanagida T, Marcu A, Matsui H, Nagashima K, Oka K, Yakota K, Taniguchi M, Kawai T. Enhancement of oxide VLS growth by carbon on substrate surface. J Phys Chem C, 2008, 112(48): 18923–18926

    CAS  Google Scholar 

  18. Wu JJ, Wu SC. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater, 2002, 14(3): 215–218

    Article  CAS  Google Scholar 

  19. Guo Y, Wang H, He C, Qiu L, Cao X. Uniform carbon-coated ZnO nanorods: microwave-assisted preparation, cytotoxicity, and photocatalytic activity. Langmuir, 2009, 25(8): 4678–4684

    Article  CAS  Google Scholar 

  20. Sounart TL, Liu J, Voigt JA, Hsu JWP, Spoerke ED, Tian ZR, Jiang YB. Sequential nucleation and growth of complex nanostructured films. Adv Funct Mater, 2006, 16(3): 335–344

    Article  CAS  Google Scholar 

  21. Cozzoli PD, Kornowski A, Weller H. Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction-oxidation reaction. J Phys Chem B, 2005, 109(7): 2638–2644

    Article  CAS  Google Scholar 

  22. Jun YW, Lee JH, Choi J, Cheon J. Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. J Phys Chem B, 2005, 109(31): 14795–14806

    Article  CAS  Google Scholar 

  23. Zhang J, Sun LD, Yin JL, Su HL, Liao CS, Yan CH. Control of ZnO morphology via a simple solution route. Chem Mater, 2002, 14(10): 4172–4177

    Article  CAS  Google Scholar 

  24. Li ZK, Huang XT, Liu JP, Li YY, Li GY. Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Mater Lett, 2008, 62(10–11): 1503–1506

    Article  CAS  Google Scholar 

  25. Bahnemann DW, Kormann C, Hoffmann MR. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem, 1987, 91(14): 3789–3798

    Article  CAS  Google Scholar 

  26. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc, 2009, 131(11): 4078–4083

    Article  CAS  Google Scholar 

  27. Tandra G, Soumitra K, Jay G, Subhadra C. ZnO nanocones: solvothermal synthesis and photoluminescence properties. Mater Res Bull, 2008, 43(8–9): 2228–2238

    Google Scholar 

  28. Zhou X, Kuang Q, Jiang ZY, Xie ZX, Xu T, Huang RB, Zheng LS, The origin of green emission of ZnO microcrystallites: surfacedependent light emission studied by cathodoluminescence. J Phys Chem C, 2007, 111(32): 12091–12093

    Article  CAS  Google Scholar 

  29. Li F, Ding Y, Gao PX, Xin XQ, Wang ZL. Single-crystal hexagonal disks and ringsof ZnO: low-temperature, Large-scale synthesis and growth mechanism. Angew Chem Int Ed, 2004, 43(39): 5238–5242

    Article  CAS  Google Scholar 

  30. DjurišiĆ AB, Leung YH. Optical properties of ZnO nanostructures. Small, 2006, 2(8–9): 944–961

    Google Scholar 

  31. Jiang P, Zhou JJ, Fang HF, Wang CY, Wang ZL, Xie SS. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater, 2007, 17(8): 1303–1310

    Article  CAS  Google Scholar 

  32. Han XG, He HZ, Kuang Q, Zhou X, Zhang XH, Xu T, Xie ZX, Zheng LS. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C, 2009, 113(2): 584–589

    Article  CAS  Google Scholar 

  33. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, Zhu Y. Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg Chem, 2007, 46(16): 6675–6682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YaQi Jiang or ZhaoXiong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Li, F., Sun, R. et al. A simple solvothermal route towards the morphological control of ZnO and tuning of its optical and photocatalytic properties. Sci. China Chem. 53, 1711–1717 (2010). https://doi.org/10.1007/s11426-010-3160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3160-7

Keywords

Navigation