Skip to main content
Log in

Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties. In this work, a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property. AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly, and was characterized by scanning electron microscopy and cyclic voltammetry. Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode, it was significantly enhanced after AuNP deposition. The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs, which could be rationalized by different modes of mass diffusion. Among the different sizes of AuNP investigated, the lowest anodic peak potential was observed on 11 nm AuNP. However, the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry. It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo XL, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemcial sensors and biosensors. Electroanalysis, 2006, 18: 319–326

    Article  CAS  Google Scholar 

  2. Welch CM, Compton RG. The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem, 2006, 384: 601–619

    Article  CAS  Google Scholar 

  3. Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta, 2007, 598: 181–192

    Article  CAS  Google Scholar 

  4. You T, Niwa O, Tomita M, Hirono H. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem, 2003, 75: 2080–2085

    Article  CAS  Google Scholar 

  5. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S. An amperometric detector formed highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem, 2003, 75: 5191–5196

    Article  CAS  Google Scholar 

  6. El-Deab MS, Ohsaka T. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles electrodeposited gold electrodes. Electrochem Commun, 2002, 4: 288–292

    Article  CAS  Google Scholar 

  7. Raj CR, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem, 2003, 543: 127–133

    Article  CAS  Google Scholar 

  8. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y. Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem Commun, 2006, 8: 1035–1040

    Article  CAS  Google Scholar 

  9. Su L, Mao L. Gold nanoparticle/alkanedithiol conductive films selfassemble onto gold electrode: Electrochemistry and electroanalytical application for voltammetric determination of trace amount of catechol. Talanta, 2006, 70: 68–74

    Article  CAS  Google Scholar 

  10. Raj CR, Abdelrahman AI, Ohsaka T. Gold nanoparticle-assisted electroreduction of oxygen. Electrochem Commun, 2005, 7: 888–893

    Article  CAS  Google Scholar 

  11. Jena BK, Raj CR. Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine. J Phys Chem C, 2007, 111: 6228–6232

    Article  CAS  Google Scholar 

  12. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun, 2005, 7: 189–193

    Article  CAS  Google Scholar 

  13. Chandra D, Jena BK, Raj CR, Bhaumik A. Functionalized mesoporous cross-linked polymer as efficient host for loading gold nanoparticles and its electrocatalytic behavior for reduction of H2O2. Chem Mater, 2007, 19: 6290–6296

    Article  CAS  Google Scholar 

  14. Yu A, Liang Z, Cho J, Caruso F. Nanostructured electrochemical sensor based on dense gold nanoparticle film. Nano Lett, 2003, 3: 1203–1207

    Article  CAS  Google Scholar 

  15. Ca DV, Sun L, Cox JA. Optimization of the dispersion of gold and platinum nanoparticles on indium tin oxide for the electrocatalytic oxidation of cysteine and arsenite. Electrochim Acta, 2006, 51: 2188–2194

    Article  CAS  Google Scholar 

  16. Zhang J, Oyama M. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta, 2005, 540: 299–306

    Article  CAS  Google Scholar 

  17. Zhang J, Oyama M. Electrocatalytic activity of three-dimensional monolayer of 3-mercaptopropionic acid assembled on gold nanoparticle arrays. Electrochem Commun, 2007, 9: 459–464

    Article  CAS  Google Scholar 

  18. Goyal RN, Gupta VK, Oyama M, Bachheti N. Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta, 2007, 72: 976–983

    Article  CAS  Google Scholar 

  19. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 1973, 241: 20–22

    CAS  Google Scholar 

  20. Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A. The surface chemistry of au colloid and their interactions with functional amino acids. J Phys Chem B, 2004, 108: 4046–5052

    Article  CAS  Google Scholar 

  21. Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem, 2002, 74: 504–509

    Article  CAS  Google Scholar 

  22. Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Griffith FR, Fox AP, Keating CD, Musick MD, Natan MJ. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir, 1996, 12: 2353–2361

    Article  CAS  Google Scholar 

  23. Li C, Liu SL, Guo LH, Chen DP. A new chemically amplified electrochemical system for DNA detection in solution. Electrochem Commun, 2005, 7: 23–28

    Article  CAS  Google Scholar 

  24. Hedges DHP, Richardson DJ, Russell DA. Electrochemical control of protein monolayers at indium tin oxide surfaces for the reagentless optical biosensing of nitric oxide. Langmuir, 2004, 20: 1901–1908

    Article  CAS  Google Scholar 

  25. Chen Z, Zu Y. Gold nanoparticle-modified ito electrode for electrogenerated chemiluminescence: well-preserved transparency and highly enhanced activity. Langmuir, 2007, 23: 11387–11390

    Article  CAS  Google Scholar 

  26. Goss CA, Charych DH, Majda M. Application of (3-mercaptopropyl) trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates. Anal Chem, 1991, 86: 85–88

    Article  Google Scholar 

  27. Hillebrandt H, Tanaka M. Electrochemical characterization of selfassembled alkylsiloxane monolayers on indium-tin oxide (ito) semiconductor electrodes. J Phys Chem B, 2001, 105: 4270–4276

    Article  CAS  Google Scholar 

  28. Zhang J, Kambayashi M, Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrode: electrochemical characterization and evaluation. Electroanalysis, 2005, 17: 408–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Hong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Guo, LH. Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode. Sci. China Chem. 53, 1778–1783 (2010). https://doi.org/10.1007/s11426-010-3159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3159-0

Keywords

Navigation