Skip to main content
Log in

Preparation of giant unilamellar CdTe quantum dot vesicles and their metabolic pathway in vivo

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Glutathione (GSH) capped CdTe quantum dots (QDs) with photoluminescence quantum yields of 61% and the maximum emitting at 601.2 nm were prepared in water phase. Giant unilamellar CdTe quantum dot vesicles (GUVs-CdTe), with diameters larger than 1.5 μm, were obtained using lower-pressure evaporation techniques with soybean lecithin. Compared with other QD liposomes, the entrapment efficiency of GUVs-CdTe for QDs has been significantly improved to 86.3%. After GUVs-CdTe were injected into mice through the tail vein, the fluorescence microscopy of tissue sections showed that GUVs-CdTe could not pass through the blood-brain barrier and air-blood barrier, which were removed mostly by the reticuloendothelial system and were widely distributed in the spleen and the liver. This behavior is the same as the character of the metabolic pathway of giant unilamellar vesicles by intravenous injections in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng X. An essay on synthetic chemistry of colloidal nanocrystals. Nano Research, 2009, 2: 425–447

    Article  CAS  Google Scholar 

  2. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci, 2004, 77: 126–134

    Article  CAS  Google Scholar 

  3. Panyala NR, Pena-Mendez EM, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed, 2009, 7: 75–91

    CAS  Google Scholar 

  4. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicol, 2007, 230: 90–104

    Article  CAS  Google Scholar 

  5. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005, 4: 435–446

    Article  CAS  Google Scholar 

  6. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY, Review—The fluorescent toolbox for assessing protein location and function. Science, 2006, 312: 217–224

    Article  CAS  Google Scholar 

  7. Wu P, Li Y, Yan XP. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem, 2009, 81: 6252–6257

    Article  CAS  Google Scholar 

  8. Rzigalinski BA, Strobl JS. Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol, 2009, 238: 280–288

    Article  CAS  Google Scholar 

  9. Chen Z, Chen H, Meng H, Xing GM, Gao XY, Sun BY, Shi XL, Yuan H, Zhang CC, Liu R, Zhao F, Zhao YL, Fang XH. Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol, 2008, 230: 364–371

    Article  CAS  Google Scholar 

  10. Zhu MQ, Chang E, Sun JT, Drezek RA. Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J Mater Chem, 2007, 17: 800–805

    Article  CAS  Google Scholar 

  11. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li JQ, Rao JH, Chen XY, Banin U, Wu AM, Sinclair R, Weiss S, Gambhir SS. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small, 2009, 5: 126–134

    Article  CAS  Google Scholar 

  12. Zhang LZ. Liposome preparation and its applications in biology and medicine (1st). Bejing Medicine university and China Union Medical University Press, 1988

  13. Wang XX, Yang ZK, Guo M, Liu Y, Huang J, San Z, Yang WS. Preparation of CdX(X=Se, Te, Te/Zns) quantum dots liposome and comparison of toxicity in vitro and in vivo. Chin J of inor Chem, 2009, 25(3): 496–500

    CAS  Google Scholar 

  14. Li HC, Zhou QF, Liu W, Yan B, Zhao Y, Jiang GB. Progress in the toxicological researches for quantum dots. Sci China Ser B-Chem, 2008, 51(5), 393–400

    Article  CAS  Google Scholar 

  15. Yang RH, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect, 2007, 115(9): 1339–1343

    Article  CAS  Google Scholar 

  16. Wang XX, Huang J, Jin RW, Yang ZK, Shan Z, Yang WS. Aqueous phase synthesis of Red CdX (X=Te, Te/CdS, Te/ZnS) quantum dots and their toxic effects. Acta Chimica Sinica, 2009, 67(17): 2025–2030

    CAS  Google Scholar 

  17. Zheng YG, Gao SJ, Ying JY. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater, 2007, 19(3): 376–380

    Article  CAS  Google Scholar 

  18. Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles. Proc Nat Acad Sci USA, 1996, 93(21): 11443–11447

    Article  CAS  Google Scholar 

  19. Pott T, Bouvrais H, Meleard P. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem Phys Lipids, 2008, 154(2): 115–119

    Article  CAS  Google Scholar 

  20. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V, Shavel A, Eychmuller A, Rakovich YP, Donegan JF. Aqueous synthesis of thiol-capped CdTe nanocrystals:& nbsp, state-of-the-Art. J Phys Chem C, 2007, 111(40): 14628–14637

    Article  CAS  Google Scholar 

  21. Yu WW, Qu L, Guo W, Peng X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater, 2003, 15(14): 2854–2860

    Article  CAS  Google Scholar 

  22. Frisoli JK, Tudor EG, Flotte TJ, Hasan T, Deutsch TF, Schomacker KT. Pharmacokinetics of a fluorescent drug using laser-induced fluorescence. Cancer Res, 1993, 53(24): 5954–5961

    CAS  Google Scholar 

  23. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Nat Acad Sci USA, 2006, 103: 18882–18886

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianXiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, Z., San, Z. et al. Preparation of giant unilamellar CdTe quantum dot vesicles and their metabolic pathway in vivo . Sci. China Chem. 53, 1718–1722 (2010). https://doi.org/10.1007/s11426-010-3098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3098-9

Keywords

Navigation