Skip to main content
Log in

Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cellular functions, either under the normal or pathological conditions or under different stresses, are the results of the coordinated action of multiple proteins interacting in macromolecular complexes or assemblies. The precise determination of the specific composition of protein complexes, especially using scalable and high-throughput methods, represents a systematic approach toward revealing particular cellular biological functions. In this regard, the direct profiling protein-protein interactions (PPIs) represent an efficient way to dissect functional pathways for revealing novel protein functions. In this review, we illustrate the technological evolution for the large-scale and precise identification of PPIs toward higher physiologically relevant accuracy. These techniques aim at improving the efficiency of complex pull-down, the signal specificity and accuracy in distinguishing specific PPIs, and the accuracy of identifying physiological relevant PPIs. A newly developed streamline proteomic approach for mapping the binary relationship of PPIs in a protein complex is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng CG, Scanga CA, Collazo-Custodio CM, Cheever AW, Hieny S, Caspar P, Sher A. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J Immunol, 2003, 171: 4758–4764

    CAS  Google Scholar 

  2. Mayer BJ. Protein-protein interactions in signaling cascades. Mol Biotechnol, 1999, 13: 201–213

    Article  CAS  Google Scholar 

  3. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol, 2004, 6: 97–105

    Article  CAS  Google Scholar 

  4. Desagher S, Severac D, Lipkin A, Bernis C, Ritchie W, Le Digarcher A, Journot L. Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery. J Biol Chem, 2004

  5. Feldhahn N, Schwering I, Lee S, Wartenberg M, Klein F, Wang H, Zhou G, Wang SM, Rowley JD, Hescheler J, Kronke M, Rajewsky K, Kuppers R, Muschen M. Silencing of B cell receptor signals in human naive B cells. J Exp Med, 2002, 196: 1291–1305

    Article  CAS  Google Scholar 

  6. Montgomery MK. RNA interference: historical overview and significance. Methods Mol Biol, 2004, 265: 3–21

    CAS  Google Scholar 

  7. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA, 2001, 98: 4569–4574

    Article  CAS  Google Scholar 

  8. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M. A map of the interactome network of the metazoan C. elegans. Science, 2004, 303: 540–543

    Article  CAS  Google Scholar 

  9. Steen H, Kuster B, Fernandez M, Pandey A, Mann M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem, 2002, 277: 1031–1039

    Article  CAS  Google Scholar 

  10. Zhang C, Dowd DR, Staal A, Gu C, Lian JB, van Wijnen AJ, Stein GS, MacDonald PN. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J Biol Chem, 2003, 278: 35325–35336

    Article  CAS  Google Scholar 

  11. Zhou Q, Lieberman PM, Boyer TG, Berk AJ. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev, 1992, 6:1964–1974

    Article  CAS  Google Scholar 

  12. Zhou Q, Lieberman PM, Boyer TG, Berk AJ. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev, 1992, 6: 1964–1974

    Article  CAS  Google Scholar 

  13. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nature biotechnology, 1999, 17: 1030–1032

    Article  CAS  Google Scholar 

  14. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science, 2006, 312: 212–217

    Article  CAS  Google Scholar 

  15. Domon B, Alving K, He T, Ryan TE, Patterson SD. Enabling parallel protein analysis through mass spectrometry. Current opinion in molecular therapeutics, 2002, 4: 577–586

    CAS  Google Scholar 

  16. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422: 198–207

    Article  CAS  Google Scholar 

  17. Chen X. Quantitative Proteomics. Methods in Molecular Biology/Methods in Molecular Medicine Book Series. Humana Press. in press

  18. Chen X, Smith LM, Bradbury EM. Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal Chem, 2000, 72: 1134–1143

    Article  CAS  Google Scholar 

  19. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA, 1999, 96: 6591–6596

    Article  CAS  Google Scholar 

  20. Goodlett DR, Keller A, Watts JD, Newitt R, Yi EC, Purvine S, Eng JK, von Haller P, Aebersold R, Kolker E. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom, 2001, 15: 1214–1221

    Article  CAS  Google Scholar 

  21. Zhu H, Pan S, Gu S, Bradbury EM, Chen X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom, 2002, 16: 2115–2123

    Article  CAS  Google Scholar 

  22. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002, 1: 376–386

    Article  CAS  Google Scholar 

  23. Zhu H, Pan S, Gu S, Bradbury EM, Chen X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom, 2002, 16: 2115–2123

    Article  CAS  Google Scholar 

  24. Zhu H, Hunter TC, Pan S, Yau PM, Bradbury EM, Chen X. Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal Chem, 2002, 74: 1687–1694

    Article  CAS  Google Scholar 

  25. Gu S, Pan S, Bradbury EM, Chen X. Use of deuterium-labeled lysine for efficient protein identification and peptide de novo sequencing. Anal Chem, 2002, 74: 5774–5785

    Article  CAS  Google Scholar 

  26. Chen X. Quantitative Proteomics. Methods in Molecular Biology/Methods in Molecular Medicine Book Series. Humana Press. 2004

  27. Gu S, Pan S, Bradbury EM, Chen X. Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging. J Am Soc Mass Spectrom, 2003, 14: 1–7

    Article  CAS  Google Scholar 

  28. Pan S, Gu S, Bradbury EM, Chen X. Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging. Anal Chem, 2003, 75: 1316–1324

    Article  CAS  Google Scholar 

  29. Hunter TC, Yang L, Zhu H, Majidi V, Bradbury EM, Chen X. Peptide mass mapping constrained with stable isotope-tagged peptides for identification of protein mixtures. Anal Chem, 2001, 73: 4891–4902

    Article  CAS  Google Scholar 

  30. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG, Tirado-Gomez M, Lopez-Berestein G, Chen X. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood, 2004, 104: 1314–1323

    Article  CAS  Google Scholar 

  31. Wang T, Gu S, Ronni T, Du YC, Chen X. In vivo dual-tagging proteomic approach in studying signaling pathways in immune response. J proteome Res, 2005, 4: 941–949

    Article  CAS  Google Scholar 

  32. Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol, 2002, 22: 6070–6078

    Article  CAS  Google Scholar 

  33. Wang T, Chuang TH, Ronni T, Gu S, Du YC, Cai H, Sun HQ, Yin HL, Chen X. Flightless I homolog negatively modulates the TLR pathway. J Immunol, 2006, 176: 1355–1362

    CAS  Google Scholar 

  34. He YF, Bao HM, Xiao XF, Zuo S, Du RY, Tang SW, Yang PY, Chen X. Biotin tagging coupled with amino acid-coded mass tagging for efficient and precise screening of interaction proteome in mammalian cells. Proteomics, 2009, 9: 5414–5424

    Article  CAS  Google Scholar 

  35. Du YC, Gu S, Zhou J, Wang T, Cai H, Macinnes MA, Bradbury EM, Chen X. The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca(2+)/calmodulin in the ionizing radiation-induced cell cycle arrest. Mol Cell Proteomics, 2006, 5: 1033–1044

    Article  CAS  Google Scholar 

  36. Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102: 7583–7588

    Article  CAS  Google Scholar 

  37. Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci, 1999, 8: 921–929

    CAS  Google Scholar 

  38. Chapman-Smith A, Jr Cronan JE. In vivo enzymatic protein biotinylation. Biomolecular engineering, 1999, 16: 119–125

    Article  CAS  Google Scholar 

  39. de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100: 7480–7485

    Article  CAS  Google Scholar 

  40. Berggard T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics, 2007, 7: 2833–2842

    Article  CAS  Google Scholar 

  41. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature methods, 2006, 3: 1013–1019

    Article  CAS  Google Scholar 

  42. Lee MH, Lozano G. Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Seminars in cancer biology, 2006, 16: 225–234

    Article  CAS  Google Scholar 

  43. Yang H, Wen YY, Zhao R, Lin YL, Fournier K, Yang HY, Qiu Y, Diaz J, Laronga C, Lee MH. DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer research, 2006, 66: 3096–3105

    Article  CAS  Google Scholar 

  44. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E. Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking. J Cell Sci, 2007, 120: 3929–3940

    Article  CAS  Google Scholar 

  45. Richter S, Geldner N, Schrader J, Wolters H, Stierhof YD, Rios G, Koncz C, Robinson DG, Jurgens G. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 2007, 448: 488–492

    Article  CAS  Google Scholar 

  46. Manolea F, Claude A, Chun J, Rosas J, Melancon P. Distinct Functions for Arf Guanine Nucleotide Exchange Factors at the Golgi Complex: GBF1 and BIGs Are Required for Assembly and Maintenance of the Golgi Stack and trans-Golgi Network, Respectively. Molecular biology of the cell, 2008, 19: 523–535

    Article  CAS  Google Scholar 

  47. Citterio C, Vichi A, Pacheco-Rodriguez G, Aponte AM, Moss J, Vaughan M. Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105: 2877–2882

    Article  Google Scholar 

  48. Pandey A, Blagoev B, Kratchmarova I, Fernandez M, Nielsen M, Kristiansen TZ, Ohara O, Podtelejnikov AV, Roche S, Lodish HF, Mann M. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene, 2002, 21: 8029–8036

    Article  CAS  Google Scholar 

  49. Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS genetics, 2006, 2: e196

    Article  CAS  Google Scholar 

  50. Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics, 2007, 7: 340–350

    Article  Google Scholar 

  51. Xie L, Jing L, Yu Y, Nakamura K, Parker CE, Johnson GL, Chen X. In vivo profiling endogenous interactions with knock-out in mammalian cells. Anal Chem, 2009, 81: 1411–1417

    Article  CAS  Google Scholar 

  52. Selbach M, Mann M. Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nature methods, 2006, 3: 981–983

    Article  CAS  Google Scholar 

  53. Du Y, Zhou J, Fan J, Shen Z, Chen X. Streamline proteomic approach for characterizing protein-protein interaction network in a RAD52 protein complex. J Proteome Res, 2009, 8: 2211–2217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Chen.

Additional information

Support from the Shanghai Science and Technology Development Program (Grant Nos. 03DZ14024 & 07ZR14010) and the 863 High Technology Foundation of China (Grant No. 2006AA02A310), US NIH 1R01AI064806-01A2, 5R21DK082706, and U.S. Department of Energy, the Office of Science (BER) (Grant No. DE-FG02-07ER64422).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X. Proteomic dissection of biological pathways/processes through profiling protein-protein interaction networks. Sci. China Chem. 53, 737–746 (2010). https://doi.org/10.1007/s11426-010-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0136-6

Keywords

Navigation