Skip to main content
Log in

Homochiral expression of proteins: a discussion on the natural chirality related to the origin of life

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Homochirality in life has always been a driving force in scientific research and natural exploration. It has not been satisfactorily explained, and systematic investigations are necessary. This paper reported a homochiral expression of proteins dependent on the stirring direction of growing media. By controlling the stirring direction clockwise (CW) and anticlockwise (ACW) of the culture medium, proteins with distinct secondary structures were obtained, and D-amino acid may be included in the protein cultured with the stirring direction of ACW. Considering the effect of force fields, which might affect the process of folding and refolding of cellular protein in this report, the control of force fields might be a good way to prepare asymmetric drugs, and the rotational direction of the earth is possibly related to the chirality in primitive life molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies CL, Housden NG, Duhme-Klair AK. Intermolecular sensitization of a terbium-containing amphiphile by an integral membrane protein. Angew Chem Int Ed, 2008, 47:8856–8858

    Article  CAS  Google Scholar 

  2. Qiu Y, Chen P, Guo P, Li Y, Liu M. Supramolecular chiroptical switches based on achiral molecules. Adv Mater, 2008, 20:2908–2913

    Article  CAS  Google Scholar 

  3. Prusiner SB. Prion diseases and the BSE crisis. Science, 1997, 278:245–251

    Article  CAS  Google Scholar 

  4. Zeng LX, He YJ, Dai ZF, Wang J, Wang CQ, Yang YG. Chiral assembly of achiral pseudoisocyanine with D- and L-phenylalanine. Sci China Ser B-Chem, 2009, 52:1227–1234

    Article  CAS  Google Scholar 

  5. Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC. Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev, 1998, 98:2391–2404

    Article  CAS  Google Scholar 

  6. Kawasaki T, Tokuhiro M, Kimizuka N, Kunitake T. Hierarchical self-assembly of chiral complementary hydrogen-bond networks in water: reconstitution of supramolecular membranes. J Am Chem Soc, 2001, 123:6792–6800

    Article  CAS  Google Scholar 

  7. Wang M, Silva GL, Armitage BA. DNA-templated formation of a helical cyanine dye J-aggregate. J Am Chem Soc, 2000, 122:9977–9986

    Article  CAS  Google Scholar 

  8. Ribó JM, Crusats J, Sagués F, Claret J, Rubires R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science, 2001, 292:2063–2066

    Article  Google Scholar 

  9. Zhang L, Yuan J, Liu M. Supramolecular chirality of achiral TPPS complexed with chiral molecular films. J Phys Chem B, 2003, 107:12768–12773

    Article  CAS  Google Scholar 

  10. Kim MJ, Shin BG, Kim JJ, Kim DY. Photoinduced supramolecular chirality in amorphous azobenzene polymer films. J Am Chem Soc, 2002, 124:3504–3505

    Article  CAS  Google Scholar 

  11. Rikken GLJA, Raupach E. Enantioselective magnetochiral photochemistry. Nature, 2000, 405:932–935

    Article  CAS  Google Scholar 

  12. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, McCall A, Clark S, Ménard F, Tamura M. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science, 1998, 281:672–674

    Article  CAS  Google Scholar 

  13. Cave RJ. Inducing chirality with circularly polarized light. Science, 2009, 323:1435–1436

    Article  CAS  Google Scholar 

  14. Kovacs KL, Keszthelyi L. Unconsidered sources of chirality in nature. Origins of Life, 1981, 11:93–103

    Article  CAS  Google Scholar 

  15. Rau H. Asymmetric photochemistry in solution. Chem Rev, 1983, 83:535–547

    Article  CAS  Google Scholar 

  16. Zahn R, Liu A, Lührs T, Riek R, Schroetter CV, Garcia FL, Billeter M, Calzolai L, Wider G, Wüthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci USA, 2000, 97(1):145–150

    Article  CAS  Google Scholar 

  17. Munishkina LA, Fink AL. Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta, 20071768:1862–1885

    Article  CAS  Google Scholar 

  18. Yang P, Yang BS. Introduction to Ion Probe Method. Science Press,1994. 163–165

  19. Yang Y, Xu JG, Chen GZ. Three-dimensional fluorescence spectroscopy study on protein conformation in solution. Sci China Ser B-Chem, 1997, 27:16–22

    Google Scholar 

  20. Chen RF, Vurek GG, Alexander N. Fluorescence decay times: proteins, coenzymes, and other compounds in water. Science, 1967, 156:949–951

    Article  CAS  Google Scholar 

  21. Jr. WDH, Collier WE. Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin. J Am Chem Soc, 1981, 103(10):2856–2862

    Article  Google Scholar 

  22. Ewing MA, Wang J, Sheeley SA, Sweedler JV. Detecting D-amino acid-containing neuropeptides using selective enzymatic digestion. Anal Chem, 2008, 80:2874–2880

    Article  CAS  Google Scholar 

  23. Vuorimaa E, Urtti A, Seppänen R, Lemmetyinen H, Yliperttula M. Time-resolved fluorescence spectroscopy reveals functional differences of cationic polymer-DNA complexes. J Am Chem Soc, 2008, 130:11695–11700

    Article  CAS  Google Scholar 

  24. Aizawa K, Ohhata S, Nishie H, Ohsaka A, Kato K, Matsushita K, Hioka K. In vitro study of the binding of terbium to tryptophan by 1H-NMR and fluorescence spectroscopy. Biochem Biophys Res Commun, 1987, 146:791–796

    Article  CAS  Google Scholar 

  25. Klewpatinond M, Davies P, Bowes S, Brown DR, Viles JH. Deconvoluting the Cu2+ binding modes of full-length prion protein. J Biol Chem, 2008, 283:1870–1881

    Article  CAS  Google Scholar 

  26. Viles JH, Cohen FE, Prusiner S, Goodin D, Wright PE, Dyson HJ. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA, 1999, 96:2042–2046

    Article  CAS  Google Scholar 

  27. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science, 1999, 286:1888–1893

    Article  CAS  Google Scholar 

  28. Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci, 1999, 26:597–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChengZhi Huang.

Additional information

Support from the Major State Basie Research Development Program (Grant No. 2006CB933100) and the National Natural Science Foundation of China (Grant No. 90813019)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Peng, L., Zhen, S. et al. Homochiral expression of proteins: a discussion on the natural chirality related to the origin of life. Sci. China Chem. 53, 792–796 (2010). https://doi.org/10.1007/s11426-010-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0128-6

Keywords

Navigation