Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality


Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using L- and D-gelators in xerogels respectively, and CD spectra exhibited mirror-image circular dichroism. The PDA in xerogel exhibited typical blue-to-red transition responsive to the temperature and pH, while the supramolecular chirality of PDA showed a corresponding change.

This is a preview of subscription content, access via your institution.


  1. 1

    Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J. Optically active polysilanes. Ten years of progress and new polymer twist for nanoscience and nanotechnology. Polym J, 2003, 35: 297–344

    Article  CAS  Google Scholar 

  2. 2

    Yashima E, Maeda K, Okamoto Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399: 449–451

    Article  CAS  Google Scholar 

  3. 3

    Hopkins TE, Wagener KB. Chiral polyolefins. Adv Mater, 2002, 14: 1703–1715

    Article  CAS  Google Scholar 

  4. 4

    Chen PL, Ma XG, Liu MH. Optically active phthalocyaninatopolysiloxane constructed from achiral monomers: From noncovalent assembly to covalent polymer. Macromolecules, 2007, 40:4780–4784

    Article  CAS  Google Scholar 

  5. 5

    Yan Y, Yu Z, Huang Y W, Yuan W X, Wei Z X. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv Mater, 2007, 19: 3353–3357

    Article  CAS  Google Scholar 

  6. 6

    Nonokawa R, Yashima E. Detection and amplification of a small enantiomeric imbalance in alpha-amino acids by a helical poly (phenylacetylene) with crown ether pendants. J Am Chem Soc, 2003, 125: 1278–1283

    Article  CAS  Google Scholar 

  7. 7

    Onouchi H, Maeda K, Yashima E. A helical polyelectrolyte induced by specific interactions with biomolecules in water. J Am Chem Soc, 2001, 123: 7441–7442

    Article  CAS  Google Scholar 

  8. 8

    Charych DH, Nagy JO, Spevak W, Bednarski MD. Direct colorimetric detection of a receptor-ligand interaction by a ploymerized bilayer assembly. Science, 1993, 261: 585–588

    Article  CAS  Google Scholar 

  9. 9

    Ma ZF, Li JR, Liu MH, Cao J, Zou ZY, Tu J, Jiang L. Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J Am Chem Soc, 1998, 120: 12678–12679

    Article  CAS  Google Scholar 

  10. 10

    Lu YF, Yang Y, Sellinger A, Lu MC, Huang JM, Fan HY, Haddad R, Lopez G, Burns AR, Sasaki DY, Lu YF, Yang Y, Sellinger A, Lu MC, Huang JM, Fan HY, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 2001, 410: 913–917

    Article  CAS  Google Scholar 

  11. 11

    Reppy MA, Pindzola BA. Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun, 2007: 4317-4338

  12. 12

    Sada K, Takeuchi M, Fujita N, Numata M, Shinkai S. Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. Chem Soc Rev, 2007, 36: 415–435

    Article  CAS  Google Scholar 

  13. 13

    Potisatityuenyong A, Rojanathanes R, Turncharern G, Sukwattanasinitt M. Electronic absorption spectroscopy probed side-chain movement in chromic transitions of polydiacetylene vesicles. Langmuir, 2008, 24: 4461–4463

    Article  CAS  Google Scholar 

  14. 14

    Bhattacharya S, Acharya SNG. Impressive gelation in organic solvents by synthetic, low molecular mass, self-organizing urethane amides of L-phenylalanine. Chem Mater, 1999, 11: 3121–3132

    Article  CAS  Google Scholar 

  15. 15

    Tamaoki N, Shimada S, Okada Y, Belaissaoui A, Kruk G, Yase K, Matsuda H. Polymerization of a diacetylene dicholesteryl ester having two urethanes in organic gel states. Langmuir, 2000, 16: 7545–7547

    Article  CAS  Google Scholar 

  16. 16

    Masuda M, Hanada T, Okada Y, Yase K, Shimizu T. Polymerization in nanometer-sized fibers: Molecular packing order and polymerizability. Macromolecules, 2000, 33: 9233–9238

    Article  CAS  Google Scholar 

  17. 17

    Huang WY, Matsuoka S, Kwei TK, Okamoto Y. Aggregation and gelation of fully conjugated rigid-rod polymers. Poly(2,5-dialkyl-1,4-phenyleneethynylene)s. Macromolecules, 2001, 34: 7166–7171

    Article  CAS  Google Scholar 

  18. 18

    George M, Weiss RG. Low molecular-mass gelators with diyne functional groups and their unpolymerized and polymerized gel assemblies. Chem Mater, 2003, 15: 2879–2888

    Article  CAS  Google Scholar 

  19. 19

    Deb P, Yuan ZZ, Ramsey L, Hanks TW. Synthesis and optical properties of chiral polydiacetylenes. Macromolecules, 2007, 40: 3533–3537

    Article  CAS  Google Scholar 

  20. 20

    Hsu L, Cvetanovich GL, Stupp SI. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J Am Chem Soc, 2008, 130: 3892–3899

    Article  CAS  Google Scholar 

  21. 21

    Drake AF, Udvarhelyi P, Ando DJ, Bloor D, Obhi JS, Mann S. Chiroptical spectroscopic studies of polydiacetylenes. Polymer, 1989, 30: 1063–1069

    Article  CAS  Google Scholar 

  22. 22

    Wilson RB. Diacetylene monomers and polymers with chiral substituents: Structure, solid-state polymerization, and properties. J Am Chem Soc, 1982, 104: 509–515

    Article  CAS  Google Scholar 

  23. 23

    Bloor D. FTIR-Raman spectroscopy of polydiacetylenes with chiral pendent groups. Polymer, 1999, 40: 3901–3908

    Article  CAS  Google Scholar 

  24. 24

    Huang X, Liu MH. Chirality of photopolymerized organized supramolecular polydiacetylene films. Chem Commun, 2003: 66-67

  25. 25

    Li YG, Wang TY, Liu MH. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter, 2007, 3: 1312–1317

    Article  CAS  Google Scholar 

  26. 26

    Huang X, Jiang SG, Liu MH. Metal ion modulated organization and function of the Langmuir-Blodgett films of amphiphilic diacetylene: Photopolymerization, thermochromism, and supramolecular chirality. J Phys Chem B, 2005, 109: 114–119

    Article  CAS  Google Scholar 

  27. 27

    Wenz G, Mueller MA, Schmidt M, Wegner G. Structure of poly(diacetylenes) in solution. Macromolecules, 1984, 17: 837–850

    Article  CAS  Google Scholar 

  28. 28

    Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW. Steric communication of chiral information observed in dendronized polyacetylenes. J Am Chem Soc, 2006, 128: 16365–16372

    Article  CAS  Google Scholar 

  29. 29

    Hoeben FJM, Jonkheijm P, Meijer EW, Schenning A. About supramolecular assemblies of pi-conjugated systems. Chem Rev, 2005, 105: 1491–1546

    Article  CAS  Google Scholar 

  30. 30

    Song J, Cheng Q, Kopta S, Stevens RC. Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. J Am Chem Soc, 2001, 123: 3205–3213

    Article  CAS  Google Scholar 

  31. 31

    Günter L, Bernd T, Gerhard W. Structure, phase transitions and polymerizability of multilayers of some diacetylene monocarboxylic acids. Thin Solid Film, 1980, 68: 77–90

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to MingHua Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, P., Li, Y. & Liu, M. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality. Sci. China Chem. 53, 432–437 (2010).

Download citation


  • diacetylene
  • low-molecular-weight organogel
  • induced chirality
  • supramolecular chirality