Green solvent-based approaches for synthesis of nanomaterials


The use of green solvents (including supercritical fluids and ionic liquids) in the synthesis of nanomaterials is highlighted. The methods described can not only reduce or eliminate the use or generation of substances hazardous to health and the environment, but can also be used to efficiently prepare nanomaterials with high performances. The unique characteristics of green solvents are responsible for the green features and unusual advantages of these approaches.

This is a preview of subscription content, access via your institution.


  1. 1

    Anastas P, Warner J. Green Chemistry: Theory and Practice. New York: Oxford University Press, 1998

    Google Scholar 

  2. 2

    Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem Rev, 2007, 107: 2228–2269

    Article  CAS  Google Scholar 

  3. 3

    Darr JA, Poliakoff M. New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev, 1999, 99: 495–541

    Article  CAS  Google Scholar 

  4. 4

    Esumi K, Sarashina S, Yoshimura T. Synthesis of gold nanopartieles from an organometallic compound in supercritical carbon dioxide. Langmuir, 2004, 20: 5189–5191

    Article  CAS  Google Scholar 

  5. 5

    Eckert CA, Knutson BL, Debenedetti PG. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383: 313–318

    Article  CAS  Google Scholar 

  6. 6

    Pai RA, Humayun R, Schulberg MT, Sengupta A, Sun JN, Watkins JJ. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science, 2004, 303: 507–510

    Article  CAS  Google Scholar 

  7. 7

    Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG. Porous semiconducting gels and aerogels from chalcogenide clusters. Science, 2007, 317: 490–493

    Article  CAS  Google Scholar 

  8. 8

    Lucky RA, Charpentier PA. A one-step approach to the synthesis of ZrO2-modified TiO2 nanotubes in supercritical carbon dioxide. Adv Mater, 2008, 20: 1755–1759

    Article  CAS  Google Scholar 

  9. 9

    Zhang J, Ohara S, Umetsu M, Naka T, Hatakeyama Y, Adschiri T. Colloidal ceria nanocrystals: a tailor-made crystal morphology in supercritical water. Adv Mater, 2007, 19: 203–206

    Article  CAS  Google Scholar 

  10. 10

    Ye XR, Lin YH, Wang CM, Wai CM. Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Adv Mater, 2003, 15: 316–319

    Article  CAS  Google Scholar 

  11. 11

    Ye XR, Lin YH, Wai CM. Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem Commun, 2003, 642–643

  12. 12

    Ye XR, Lin YH, Wang CM, Engelhard MH, Wang Y, Wai CM. Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem, 2004, 14: 908–913

    Article  CAS  Google Scholar 

  13. 13

    Liu ZM, Han BX. Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater, 2009, 21: 825–829

    Article  CAS  Google Scholar 

  14. 14

    Liu ZM, Wang JQ, Zhang JL, Han BX, Wang Y, Sun ZY. In situ Eu2O3 coating of the walls of mesoporous silica SBA-15 in supercritical ethane + ethanol mixture. Micropor Mesopor Mater, 2004, 75: 101–105

    Article  CAS  Google Scholar 

  15. 15

    Fu L, Liu ZM, Liu YQ, Han BX, Wang JQ, Cao LC. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater, 2004, 16: 350–352

    Article  CAS  Google Scholar 

  16. 16

    Fu L, Liu YQ, Liu ZM, Han BX, Hu P, Cao LC, Zhu DB. Beaded cobalt oxide nanoparticles along carbon nanotubes: towards highly intergrated electronic devices. Adv Mater, 2005, 17: 217–221

    Article  CAS  Google Scholar 

  17. 17

    Fu L, Liu ZM, Liu YQ, Cao LC, Wei DC, Zhu DB. Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors. Adv Mater, 2006, 18: 181–184

    Article  CAS  Google Scholar 

  18. 18

    Sun ZY, Yuan HQ, Liu ZM, Han BX, Zhang XR. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated by carbon nanotube templates. Adv Mater, 2005, 17: 2993–2996

    Article  CAS  Google Scholar 

  19. 19

    Sun ZY, Zhang XR, Liu ZM, Han BX, Miao SD, Yang G. Y. Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J Phys Chem B, 2006, 110: 13410–13414

    Article  CAS  Google Scholar 

  20. 20

    Sun ZY, Zhang XR, Han BX, Liu ZM, Miao SD. Coating carbon nanotubes with metal oxides in ethanol modified supercritical carbon dioxide. Carbon, 2007, 45: 2589–2596

    Article  CAS  Google Scholar 

  21. 21

    An GM, Yu P, Xiao MJ, Liu ZM, Miao ZJ. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology, 2008, 19: 275709

    Article  CAS  Google Scholar 

  22. 22

    An GM, Zhang Y, Liu ZM, Miao ZJ, Ding KL. Preparation of porous chromium oxide nanotubes using carbon nanotubes as templates and their application for ethanol sensor. Nanotechnology, 2008, 19: 035504

    Article  CAS  Google Scholar 

  23. 23

    An GM, Na N, Zhang XR, Miao ZJ, Miao SD, Liu ZM. SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for chemical sensor and anode of lithium ion battery. Nanotechnology, 2007, 18: 435707

    Article  Google Scholar 

  24. 24

    Sun ZY, Liu ZM, Han BX, An G. M. Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes. Mater Lett, 2007, 61: 4565–4568

    Article  CAS  Google Scholar 

  25. 25

    Sun ZY, Liu ZM, Han BX, Wang Y, Du JM, Xie ZL. Fabrication of Ru-carbon nanotube nanocomposites in supercritical water. Adv Mater, 2005, 17: 928–932

    Article  CAS  Google Scholar 

  26. 26

    Ziegler KJ, Doty RC, Johnston KP, Korgel BA. Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water. J Am Chem Soc, 2001, 123: 7797–7803

    Article  CAS  Google Scholar 

  27. 27

    Liu ZM, Dong ZX, Han BX, Wang JQ, He J, Yang GY. Composites prepared by the polymerization of styrene within supercritical CO2-swollen polypropylene. Chem Mater, 2002, 14: 4619–4623

    Article  CAS  Google Scholar 

  28. 28

    Busby AJ, Zhang JX, Roberts CJ, Lester E, Howdle SM. Novel nanostructured polymeric composites of polycaprolactone and ultra-high-molecular-weight polyethylene via a supercritical-fluid route. Adv Mater, 2005, 17: 364–367

    Article  CAS  Google Scholar 

  29. 29

    Yoda S, Hasegawa A, Suda H, Uchimaru Y, Haraya K, Tsuji T, Otake K. Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation. Chem Mater, 2004, 16: 2363–2368

    Article  CAS  Google Scholar 

  30. 30

    Sun DH, Zhang R, Liu ZM, Huang Y, Wang Y, He J, Han BX, Yang GY. Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO2. Macromolecules, 2005, 38: 5617–5624

    Article  CAS  Google Scholar 

  31. 31

    Zerda AS, Caskey TC, Lesser AJ. Highly concentrated, intercalated silicate nanocomposites: Synthesis and characterization. Macromolecules, 2003, 36: 1603–1608

    Article  CAS  Google Scholar 

  32. 32

    Wang JQ, Zhang CL, Liu ZM, Ding KL, Yang ZZ. A simple and efficient route to prepare inorganic compound/polymer composites in supercritical fluids. Macromol Rapid Commun, 2006, 27: 787–792

    Article  CAS  Google Scholar 

  33. 33

    Miao SD, Zhang CL, Liu ZM, Han BX, Xie Y, Ding SJ, Yang ZZ. Highly efficient nanocatalysts supported on hollow polymer nanospheres: synthesis, characterization and applications. J Phys Chem C, 2008, 112: 774–780

    Article  CAS  Google Scholar 

  34. 34

    Xie Y, Zhang CL, Miao SD, Liu ZM, Ding KL, Miao ZJ, An GM, Yang ZZ. One-pot synthesis of ZnS/polymer composites in supercritical CO2-ethanol solution and their applications in degradation of dyes. J Colloid Interf Sci, 2008, 318: 110–115

    Article  CAS  Google Scholar 

  35. 35

    Smith BL, Schaffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999, 399: 761–763

    Article  CAS  Google Scholar 

  36. 36

    Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater, 2003, 2: 577–585

    Article  CAS  Google Scholar 

  37. 37

    Curnow P, Bessette PH, Kisailus D, Murr MM, Daugherty PS, Morse DE. Enzymatic synthesis of layered titanium phosphates at low temperature and neutral pH by cell-surface display of silicatein-alpha. J Am Chem Soc, 2005, 127: 15749–15755

    Article  CAS  Google Scholar 

  38. 38

    Hall SR, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chem Commun, 2003, 2784–2785

  39. 39

    Wang Y, Liu ZM, Han BX, Sun ZY, Du JM, Zhang JL, Wu WZ, Miao ZJ. Replication of biological organizations through a supercritical fluid route. Chem Commun, 2005, 2948–2949

  40. 40

    Miao Z, Liu ZM, Han BX, Wang Y, Sun ZY, Zhang JJ. Synthesis of TiO2 nanotube networks from the mineralization of swim bladder membrane in supercritical CO2. J Supercrit Fluids, 2007, 42: 310–315

    Article  CAS  Google Scholar 

  41. 41

    Miao ZJ, Ding KL, Liu ZM, An G. M, Han B X, Miao S D, Sun Z Y. Fabrication of 3D-networks from the native starch and their application to produce hierarchically ordered metal oxide networks through a supercritical route. Micropor Mesopor Mater, 2008, 111: 104–109

    Article  CAS  Google Scholar 

  42. 42

    Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc, 2004, 126: 3026–3027

    Article  CAS  Google Scholar 

  43. 43

    Li ZH, Liu ZM, Zhang JL, Han BX, Du JM, Gao YA, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. J Phys Chem B, 2005, 109: 14445–14448

    Article  CAS  Google Scholar 

  44. 44

    Jiang Y, Zhu YJ. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. J Phys Chem B, 2005, 109: 4361–4364

    Article  CAS  Google Scholar 

  45. 45

    Zhu YJ, Wang WW, Qi RJ, Hu XL. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed, 2004, 43: 1410–1414

    Article  CAS  Google Scholar 

  46. 46

    Li ZH, Luan YX, Wang QZ, Zhuang GS, Qi YX, Wang Y, Wang CG. ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chem Commun, 2009, 6273–6275

  47. 47

    Li ZH, Luan YX, Mu TC, Chen GW. Unusual nanostructured ZnO particles from an ionic liquid precursor. Chem Commun, 2009, 1258–1260

  48. 48

    Ding KL, Miao ZJ, Liu ZM, Zhang ZF, Han BX, An GM, Miao SD, Xie Y. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc, 2007, 129: 6362–6363

    Article  CAS  Google Scholar 

  49. 49

    Miao SD, Liu ZM, Han BX, Yu X, Du JM, Miao ZJ. Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene. Angew Chem Int Ed, 2006, 45: 266–269

    Article  CAS  Google Scholar 

  50. 50

    Miao SD, Liu ZM, Zhang ZF, Han BX, Miao ZJ, Ding KL, An GM. Ionic liquid-assisted immobilization of Rh on attapulgite and its application in cyclohexene hydrogenation. J Phys Chem C, 2007, 111: 2185–2190

    Article  CAS  Google Scholar 

  51. 51

    Tao RT, Miao SD, Liu ZM, Xie Y, Han BX, An GM, Ding KL. Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reaction. Green Chem, 2009, 11: 96–101

    Article  CAS  Google Scholar 

  52. 52

    Ding KL, Miao ZJ, Liu ZM, An GM, Xie Y, Tao RT, Han BX. Imidazolium cations mediated synthesis of polystyrene-polyaniline core-shell structure. J Mater Chem, 2008, 18: 5406–5411

    Article  CAS  Google Scholar 

  53. 53

    Miao ZJ, Wang Y, Liu ZM, Huang J, Han BX, Sun ZY, Du JM. Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid. J Nanosci Nanotech, 2006, 6: 227–230

    Article  CAS  Google Scholar 

  54. 54

    Du JM, Liu ZM, Li ZH, Han BX, Huang Y, Zhang JL. Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid. Micropor Mesopor Mater, 2005, 83: 145–149

    Article  CAS  Google Scholar 

  55. 55

    Miao SD, Miao ZJ, Liu ZM, Han BX, Zhang H, Zhang J, Synthesis of mesoporous TiO2 films in ionic liquid dissolving cellulose. Micropor Mesopor Mater, 2006, 95: 26–30

    Article  CAS  Google Scholar 

  56. 56

    Miao SD, Liu ZM, Miao ZJ, Han BX, Ding KL, An GM, Xie Y. Ionic liquid-mediated synthesis of crystalline CeO2 mesoporous films and their application in aerobic oxidation of benzyl alcohol. Micropor Mesopor Mater, 2009, 117: 386–390

    Article  CAS  Google Scholar 

  57. 57

    Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E. Guanidine is a Zn2+-binding ligand at neutral pH in aqueous solution. J Am Chem Soc, 2002, 124: 5256–5257

    Article  CAS  Google Scholar 

  58. 58

    Xie Y, Ding KL, Liu ZM, Tao RT, Sun ZY, Zhang HY, An GM. In-situ controllably loading ultrafine noble metal particles on titania. J Am Chem Soc, 2009, 131: 6648–6649

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to ZhiMin Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z., Sun, Z. Green solvent-based approaches for synthesis of nanomaterials. Sci. China Chem. 53, 372–382 (2010).

Download citation


  • green solvent
  • supercritical fluid
  • ionic liquid
  • nanomaterial
  • synthesis