Skip to main content
Log in

Construction of tunable supramolecular networks studied by scanning tunneling microscopy

  • Feature Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective catalysis, molecular recognition, self-assembly, and host-guest supramolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Venuto PB. Organic catalysis over zeolites: a perspective on reaction paths within micropores. Microporous Mater, 1994, 2: 297–411

    Article  CAS  Google Scholar 

  2. Jones CW, Tsuji K, Davis ME. Organic-functionalized molecular sieves as shape-selective catalysts. Nature, 1998, 393: 52–54

    Article  CAS  Google Scholar 

  3. Seo SJ, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404: 982–986

    Article  CAS  Google Scholar 

  4. Kepert CJ, Prior TJ, Rosseinsky MJ. A versatile family of interconvertible microporous chiral molecular frameworks: the first example of ligand control of network chirality. J Am Chem Soc, 2000, 122: 5158–5168

    Article  CAS  Google Scholar 

  5. Fujita M, Kwon YJ, Washizu S, Ogura K. preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J Am Chem Soc, 1994, 116: 1151–1152

    Article  CAS  Google Scholar 

  6. Endo K, Koike T, Sawaki T, Hayashida O, Masuda H, Aoyama H. Catalysis by organic solids. Stereoselective Diels-Alder reactions promoted by microporous molecular crystals having an extensive hydrogen-bonded network. J Am Chem Soc, 1997, 119: 4117–4122

    Article  CAS  Google Scholar 

  7. Sawaki T, Dewa T, Aoyama Y. Immobilization of soluble metal complexes with a hydrogen-bonded organic network as a supporter. A simple route to microporous solid lewis acid catalysts. J Am Chem Soc, 1998, 120: 8539–8540

    Article  CAS  Google Scholar 

  8. Xiong R, You X, Abraham BF, Xue Z, Che C. Enantioseparation of racemic organic molecules by a zeolite analogue. Angew Chem Int Ed, 2001, 40: 4422–4425

    Article  CAS  Google Scholar 

  9. Eddaoudi M, Li H, Yaghi OM. Highly porous and stable metalorganic frameworks: Structure design and sorption properties. J Am Chem Soc, 2000, 122: 1391–1397

    Article  CAS  Google Scholar 

  10. Eddaoudi M, Kim JH, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 469–472

  11. Noro S, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew Chem Int Ed, 2000, 39: 2081–2084

    Article  Google Scholar 

  12. Tabares LC, Navarro JAR, Salas JM. Cooperative guest inclusion by a zeolite analogue coordination polymer. Sorption behavior with gases and amine and group 1 metal salts. J Am Chem Soc, 2001, 123: 383–387

    Article  CAS  Google Scholar 

  13. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM. Interwoven metal-organic framework on a periodic minimal surface with extralarge pores. Science, 2001, 291: 1021–1023

    Article  CAS  Google Scholar 

  14. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276–279

    Article  CAS  Google Scholar 

  15. Seki K. Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem Commun, 2001, 1496–1497

  16. Kondo M, Okubu T, Asami A, Noro S, Yoshitomi T, Kitagawa S, Ishii T, Matsuzaka H, Seki K. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand). Angew Chem Int Ed, 1999, 38: 140–143

    Article  CAS  Google Scholar 

  17. Holman KT, Pivovar AM, Swift JA, Ward MD. Metric engineering of soft molecular host frameworks. Acc Chem Res, 2001, 34: 107–118

    Article  CAS  Google Scholar 

  18. Kasai K, Aoyagi M, Fujita M. Flexible coordination networks with fluorinated backbones. Remarkable ability for induced-fit enclathration of organic molecules. J Am Chem Soc, 2000, 122: 2140–2141

    Article  CAS  Google Scholar 

  19. Kiang YH, Garner GB, Lee S, Xu Z, Lobkovsky EB. Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts. J Am Chem Soc, 1999, 121: 8204–8215

    Article  CAS  Google Scholar 

  20. Clearfield A. Role of ion exchange in solid-state chemistry. Chem Rev, 1988, 88: 125–148

    Article  CAS  Google Scholar 

  21. Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′, 4″,4′″-tetracyanotetraphenylmethane]BF4·xC6H5NO2. J Am Chem Soc, 1990, 112: 1546–1554

    Article  CAS  Google Scholar 

  22. Robinson F, Zaworotko MJ. Triple interpenetration in [Ag(4,4′-bipyridine)][NO3], a cationic polymer with a three-dimensional motif generated by self-assembly of ‘T-shaped’ building blocks. J Chem Soc, Chem Commun, 1995, 2413–2414

  23. Yaghi OM, Li H. T-shaped molecular building units in the porous structure of Ag(4,4′-bpy)·NO3. J Am Chem Soc, 1996, 118: 295–296

    Article  CAS  Google Scholar 

  24. Breck DW. Zeolite Molecule Mieves: Structure, Chemistry, and Use. London: Wiley and Sons, 1974

    Google Scholar 

  25. Szostak R. Molecule Sieves: Principles of Synthesis and Identification. New York: Van Nostrand Reinold, 1989

    Google Scholar 

  26. Gaffney TR. Porous solids for air separation. Curr Opin Solid State Mater Sci, 1996, 1: 69–75

    Article  CAS  Google Scholar 

  27. Lehn JM. Toward complex matter: Supramolecular chemistry and self-organization. Proc Natl Acad Sci USA, 2002, 99: 4763–4768

    Article  CAS  Google Scholar 

  28. Balzani V, Credi A, Raymo FM, Stoddart JF. Artificial molecular machines. Angew Chem Int Ed, 2000, 39: 3349–3391

    Article  Google Scholar 

  29. Reinhoudt DN, Crego-Calama M. Synthesis beyond the molecule. Science, 2002, 295: 2403–2407

    Article  CAS  Google Scholar 

  30. Maly KE, Gagnon E, Maris T, Wuest JD. Engineering hydrogen-bonded molecular crystals built from derivatives of hexaphenylbenzene and related compounds. J Am Chem Soc, 2007, 129: 4306–4322

    Article  CAS  Google Scholar 

  31. Desiraju GR. Crystal engineering: a holistic view. Angew Chem Int Ed, 2007, 46: 8342–8356

    Article  CAS  Google Scholar 

  32. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol, 2007, 2: 687–691

    Article  CAS  Google Scholar 

  33. Pawin G, Wong KL, Kwon KY, Bartels L. A homomolecular porous network at a Cu(111) surface. Science, 2006, 313, 961–962

    Article  CAS  Google Scholar 

  34. Barth JV, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437: 671–679

    Article  CAS  Google Scholar 

  35. Surin M, Samori P, Jouaiti A, Kyritsakas N, Hosseini MW. Molecular tectonics on surfaces: Bottom-up fabrication of 1D coordination networks that form 1D and 2D arrays on graphite. Angew Chem Int Ed, 2007, 46: 245–249

    Article  CAS  Google Scholar 

  36. Lin N, Langner A, Tait SL, Rajadurai C, Ruben M, Kern K. Template-directed supramolecular self-assembly of coordination dumbbells at surfaces. Chem Commun, 2007, 4860–4862

  37. Lei S, Tahara K, Feng X, Furukawa S, De Schryver FC, Müllen K, Tobe Y, De Feyter S. Molecular clusters in two-dimensional surface-confined nanoporous molecular networks: Structure, rigidity, and dynamics. J Am Chem Soc, 2008, 130: 7119–7129

    Article  CAS  Google Scholar 

  38. Stepanow S, Lin N, Barth JV, Kern K, Surface-template assembly of two-dimensional metal-organic coordination networks. J Phys Chem B, 2006, 110: 23472–23477

    Article  CAS  Google Scholar 

  39. Ye Y, Sun W, Wang Y, Shao X, Xu X, Cheng F, Li J, Wu K, A unified model: Self-assembly of trimesic acid on gold. J Phys Chem C, 2007, 111: 10138–10141

    Article  CAS  Google Scholar 

  40. Payer D, Comisso A, Dmitriev A, Strunskus T, Lin N, Woll C, De-Vita A, Barth JV, Kern K. Ionic hydrogen bonds controlling two-dimensional supramolecular systems at a metal surface. Chem Eur J, 2007, 13: 3900–3906

    Article  CAS  Google Scholar 

  41. Otero R, Schöck M, Molina LM, Læsgaard E, Stensgaard I, Hammer B, Besenbacher F. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew Chem Int Ed, 2005, 44: 2270–2275

    Article  CAS  Google Scholar 

  42. Lin N, Stepanow S, Vidal F, Barth JV, Kern K. Manipulating 2D metal-organic networks via ligand control. Chem Commun, 2005, 1681–1683

  43. Stepanow S, Lin N, Vidal F, Landa A, Ruben M, Barth JV, Kern K. Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. Nano Lett, 2005, 5: 901–904

    Article  CAS  Google Scholar 

  44. Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature, 2003, 424: 1029–1031

    Article  CAS  Google Scholar 

  45. Staniec PA, Perdigão LMA, Saywell A, Champness NR, Beton PH. Hierarchical organisation on a two-dimensional supramolecular network. ChemPhysChem, 2007, 8: 2177–2181

    Article  CAS  Google Scholar 

  46. Stohr M, Wahl M, Spillmann H, Gade LH, Jung TA. Lateral manipulation for the positioning of molecular guests within the confinements of a highly stable self-assembled organic surface network. Small, 2007, 3: 1336–1340

    Article  CAS  Google Scholar 

  47. Tahara K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver FC, De Feyter S, Tobe Y. Two-dimensional porous molecular networks of dehydrobenzo[12] annulene derivatives via alkyl chain interdigitation. J Am Chem Soc, 2006, 128: 16613–16625

    Article  CAS  Google Scholar 

  48. Nath KG, Ivasenko O, Miwa JA, Dang H, Wuest JD, Nanci A, Peripchka DF, Rosei F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J Am Chem Soc, 2006, 128: 4212–4213

    Article  CAS  Google Scholar 

  49. Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Mol, 2002, 3: 25–31

    Article  CAS  Google Scholar 

  50. Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL. Template-induced inclusion structures with copper(II) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks. J Phys Chem B, 2004, 108: 5161–5165

    Article  CAS  Google Scholar 

  51. Kong XH, Deng K, Yang YL, Zeng QD, Wang C. H-bond switching mediated multiple flexibility in supramolecular host-guest architectures. J Phys Chem C, 2007, 111: 17382–17387

    Article  CAS  Google Scholar 

  52. Kong XH, Deng K, Yang YL, Zeng QD, Wang C. Effect of thermal annealing on hydrogen bond configurations of host lattice revealed in VOPc/TCDB host-guest architectures. J Phys Chem C, 2007, 111: 9235–9239

    Article  CAS  Google Scholar 

  53. Shen YT, Guan L, Zhu XY, Zeng QD, Wang C. Submolecular observation of photosensitive macrocycles and their isomerization effects on host-guest network. J Am Chem Soc, 2009, 131: 6174–6180

    Article  CAS  Google Scholar 

  54. Li M, Deng K, Lei SB, Yang YL, Wang TS, Shen YT, Wang CR, Zeng QD, Wang C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew Chem Int Ed, 2008, 47: 6717–6721

    Article  CAS  Google Scholar 

  55. Wu DX, Deng K, Zeng QD, Wang C. Selective effect of guest molecule length and hydrogen bonding on the supramolecular host structure. J Phys Chem B, 2005, 109: 22296–22300

    Article  CAS  Google Scholar 

  56. Wu DX, Deng K, He M, Zeng QD, Wang C. Coadsorption-induced reconstruction of supramolecular assembly characteristics. Chem-PhysChem, 2007, 8: 1519–1523

    CAS  Google Scholar 

  57. Ma XJ, Yang YL, Deng K, Zeng QD, Zhao KQ, Wang C, Bai CL. Molecular miscibility characteristics of self-assembled 2D molecular architectures. J Mater Chem, 2008, 18: 2074–2081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Q., Wang, C. Construction of tunable supramolecular networks studied by scanning tunneling microscopy. Sci. China Chem. 53, 310–317 (2010). https://doi.org/10.1007/s11426-010-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0039-6

Keywords

Navigation