Skip to main content

Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering

Abstract

Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms. Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host, and to propagate. In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif, then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus, and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor (Shr) of Streptococcus pyrogenes and the nonstructural protein 1 (nsP1) of Sindbis virus. When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

References

  1. 1

    Berridge MJ, Bootman MD, Lipp P. Calcium: a life and death signal. Nature, 1998, 395: 645–648

    Article  CAS  Google Scholar 

  2. 2

    Verkhratsky A. Calcium and cell death. Subcell Biochem, 2007, 45: 465–480

    Article  CAS  Google Scholar 

  3. 3

    Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4: 517–529

    Article  CAS  Google Scholar 

  4. 4

    Nayler WG. Calcium and cell death. Eur Heart J, 1983, 4Suppl C: 33–41

    CAS  Google Scholar 

  5. 5

    Wankerl M, Schwartz K. Calcium transport proteins in the nonfailing and failing heart: gene expression and function. J Mol Med, 1995, 73: 487–496

    Article  CAS  Google Scholar 

  6. 6

    Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium, 2009, 46: 1–17

    Article  CAS  Google Scholar 

  7. 7

    Zhao L, Liu Y, Bruzik KS, Tsai MD. A novel calcium-dependent bacterial phosphatidylinositol-specific phospholipase C displaying unprecedented magnitudes of thio effect, inverse thio effect, and stereoselectivity. J Am Chem Soc, 2003, 125: 22–23

    Article  CAS  Google Scholar 

  8. 8

    Gangola P, Rosen BP. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem, 1987, 262: 12570–12574

    CAS  Google Scholar 

  9. 9

    Tsujibo H, Rosen BP. Energetics of calcium efflux from cells of Escherichia coli. J Bacteriol, 1983, 154: 854–858

    CAS  Google Scholar 

  10. 10

    Watkins NJ, Knight MR, Trewavas AJ, Campbell AK. Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J, 1995, 306: 865–869

    CAS  Google Scholar 

  11. 11

    Reusch RN, Huang R, Bramble LL. Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys J, 1995, 69: 754–766

    Article  CAS  Google Scholar 

  12. 12

    Trombe MC. Characterization of a calcium porter of Streptococcus pneumoniae involved in calcium regulation of growth and competence. J Gen Microbiol, 1993, 139: 433–439

    CAS  Google Scholar 

  13. 13

    Trombe MC, Rieux V, Baille F. Mutations which alter the kinetics of calcium transport alter the regulation of competence in Streptococcus pneumoniae. J Bacteriol, 1994, 176: 1992–1996

    CAS  Google Scholar 

  14. 14

    Hauck CR. Cell adhesion receptors: signaling capacity and exploitation by bacterial pathogens. Med Microbiol Immunol (Berl), 2002, 191: 55–62

    Article  CAS  Google Scholar 

  15. 15

    Norris V, Chen M, Goldberg M, Voskuil J, McGurk G, Holland IB. Calcium in bacteria: a solution to which problem? Mol Microbiol, 1991, 5: 775–778

    Article  CAS  Google Scholar 

  16. 16

    Norris V, Grant S, Freestone P, Canvin J, Sheikh F N, Toth I, Trinei M, Modha K, Norman R I. Calcium signalling in bacteria. J Bacteriol, 1996, 178: 3677–3682

    CAS  Google Scholar 

  17. 17

    Rigden DJ, Jedrzejas MJ, Galperin MY. An extracellular calcium-binding domain in bacteria with a distant relationship to EFhands. FEMS Microbiol Lett, 2003, 221: 103–110

    Article  CAS  Google Scholar 

  18. 18

    Kawasaki H, Nakayama S, Kretsinger RH. Classification and evolution of EF-hand proteins. Biometals, 1998, 11: 277–295

    Article  CAS  Google Scholar 

  19. 19

    Kim Y, Welch JT, Lindstrom KM, Franklin SJ. Chimeric HTH motifs based on EF-hands. J Biol Inorg Chem, 2001, 6: 173–181

    Article  Google Scholar 

  20. 20

    Pal GP, Elce JS, Jia Z. Dissociation and aggregation of calpain in the presence of calcium. J Biol Chem, 2001, 276: 47233–47238

    Article  CAS  Google Scholar 

  21. 21

    Raser KJ, Buroker-Kilgore M, Wang KK. Binding and aggregation of human mu-calpain by terbium ion. Biochim Biophys Acta, 1996, 1292: 9–14

    Google Scholar 

  22. 22

    Ravulapalli R, Diaz BG, Campbell R L, Davies P L. Homodimerization of calpain 3 penta-EF-hand domain. Biochem J, 2005, 388: 585–591

    Article  CAS  Google Scholar 

  23. 23

    Ye Y, Lee HW, Yang W, Shealy S, Yang JJ. Probing site-specific calmodulin calcium and lanthanide affinity by grafting. J Am Chem Soc, 2005, 127: 3743–3750

    Article  CAS  Google Scholar 

  24. 24

    Chen G, Deng H, Yang W, Yang JJ. Predicting calcium binding sites in proteins-a graph theory and geometry approach. Proteins, 2006, 64(1): 34–42

    Article  Google Scholar 

  25. 25

    Ye Y, Lee H W, Yang W, Yang J J. Calcium and lanthanide affinity of the EF-loops from the C-terminal domain of calmodulin. J Inorg Biochem, 2005, 99: 1376–1383

    Article  CAS  Google Scholar 

  26. 26

    Yang W, Wilkins A L, Ye Y, Liu ZR, Li SY, Urbauer JL, Hellinga HW, Kearney A, van der Merwe PA, Yang JJ. Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc, 2005, 127: 2085–2093

    Article  CAS  Google Scholar 

  27. 27

    Yang W, Wilkins AL, Li S, Ye Y, Yang JJ. The effects of ca2+ binding on the dynamic properties of a designed ca2+-binding protein(,). Biochemistry, 2005, 44: 8267–8273

    Article  CAS  Google Scholar 

  28. 28

    Yang JJ, Yang W. In: King R B, Ed. The Encyclopedia of Inorganic Chemistry, Second Edition. West Sussex UK: John Wiley & Sons, Ltd., 2005:227–282

    Google Scholar 

  29. 29

    Ye Y, Shealy S, Lee HW, Torshin I, Harrison R, Yang JJ. A grafting approach to obtain site-specific metal-binding properties of EF-hand proteins. Protein Eng, 2003, 16: 429–434

    Article  CAS  Google Scholar 

  30. 30

    Yang W, Jones LM, Isley L, Ye Y, Lee HW, Wilkins A, Liu ZR, Hellinga HW, Malchow R, Ghazi M, Yang JJ. Rational design of a calcium-binding protein. J Am Chem Soc, 2003, 125: 6165–6171

    Article  CAS  Google Scholar 

  31. 31

    Yang JJ, Gawthrop A, Ye Y. Obtaining site-specific calcium-binding affinities of calmodulin. Protein Pept Lett, 2003, 10: 331–345

    Article  CAS  Google Scholar 

  32. 32

    Yang W, Lee HW, Hellinga H, Yang JJ. Structural analysis, identification, and design of calcium-binding sites in proteins. Proteins, 2002, 47: 344–356

    Article  CAS  Google Scholar 

  33. 33

    Wilkins AL, Ye Y, Yang W, Lee HW, Liu ZR, Yang JJ. Metalbinding studies for a de novo designed calcium-binding protein. Protein Eng, 2002, 15: 571–574

    Article  CAS  Google Scholar 

  34. 34

    Lee HW, Yang W, Ye Y, Liu ZR, Glushka J, Yang JJ. Isolated EF-loop III of calmodulin in a scaffold protein remains unpaired in solution using pulsed-field-gradient NMR spectroscopy. Biochim Biophys Acta, 2002, 1598: 80–87

    CAS  Google Scholar 

  35. 35

    Ellis A L, Mason JC, Lee HW, Strekowski L, Patonay G, Choi H, Yang JJ. Design, synthesis, and characterization of a calcium-sensitive near infrared dye. Talanta, 2002, 56: 1099–1107

    Article  CAS  Google Scholar 

  36. 36

    Ye Y, Yang JJ. Calcium binding properties of EF-loops in a beta-sheet protein. Escom Leiden, 2001

  37. 37

    Ye Y, Lee HW, Yang W, Shealy SJ, Wilkins AL, Liu ZR, Torshin I, Harrison R, Wohlhueter R, Yang JJ. Metal binding affinity and structural properties of an isolated EF-loop in a scaffold protein. Protein Eng, 2001, 14: 1001–1013

    Article  CAS  Google Scholar 

  38. 38

    Yang W, Lee H, Liu Z, Hellinga HW, Yang JJ. Criteria for Designing a Calcium Binding Protein. Norwell: Kluwer, 2001

    Google Scholar 

  39. 39

    Yang W, Tsai T, Kats M, Yang JJ. Peptide analogs from E-cadherin with different calcium-binding affinities. J Pept Res, 2000, 55: 203–215

    Article  CAS  Google Scholar 

  40. 40

    Yang W, Lee HW, Pu M, Hellinga H, Yang JJ. Identifying and designing of calcium binding sites in proteins by computational algorithm. In: Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems. Kluwer Academic/Plenum Publishers, 2000. 127–138

  41. 41

    Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G, Yang JJ. Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins, 2006, 65: 643–655

    Article  CAS  Google Scholar 

  42. 42

    Herbaud ML, Guiseppi A, Denizot F, Haiech J, Kilhoffer MC. Calcium signalling in Bacillus subtilis. Biochim Biophys Acta, 1998, 1448: 212–226

    Article  CAS  Google Scholar 

  43. 43

    Gangola P, Rosen BP. Maintenance of intracellular calcium in Escherichia coli. J Biol Chem, 1987, 262: 12570–12574

    CAS  Google Scholar 

  44. 44

    Aitio H, Annila A, Heikkinen S, Thulin E, Drakenberg T, Kilpelainen I. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Protein Sci, 1999, 8: 2580–2588

    Article  CAS  Google Scholar 

  45. 45

    Aitio H, Annila A, Heikkinen S, Thulin E, Drakenberg T, Kilpelainen I. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Protein Sci, 1999, 8: 2580–2588

    Article  CAS  Google Scholar 

  46. 46

    Vyas NK, Vyas MN, Quiocho FA. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature, 1987, 327: 635–638

    Article  CAS  Google Scholar 

  47. 47

    Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ, Fontes CM. Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc Natl Acad Sci USA, 2003, 100: 13809–13814

    Article  CAS  Google Scholar 

  48. 48

    Lin J, Ficht TA. Protein synthesis in Brucella abortus induced during macrophage infection. Infect Immun, 1995, 63: 1409–1414

    CAS  Google Scholar 

  49. 49

    Teixeira-Gomes AP, Cloeckaert A, Zygmunt MS. Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun, 2000, 68: 2954–2961

    Article  CAS  Google Scholar 

  50. 50

    Andrade MA, Ciccarelli FD, Perez-Iratxeta C, Bork P. NEAT: a domain duplicated in genes near the components of a putative Fe3+ siderophore transporter from Gram-positive pathogenic bacteria. Genome Biol, 2002, 3: RESEARCH0047

    Article  Google Scholar 

  51. 51

    Zhou Y, Tzeng WP, Yang W, Zhou Y, Ye Y, Lee HW, Frey TK, Yang J. Identification of a Ca2+-binding domain in the rubella virus nonstructural protease. J Virol, 2007, 81: 7517–7528

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jenny Jie Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Y., Xue, S., Zhou, Y. et al. Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering. Sci. China Chem. 53, 52–60 (2010). https://doi.org/10.1007/s11426-010-0011-5

Download citation

Keywords

  • Ca2+
  • EF-hand calcium binding pockets
  • protein grafting approach
  • Streptococcus pyrogenes
  • Sindbis virus