Skip to main content
Log in

Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

In separation processes, hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules, resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang H C, Jiang J C, Lin M S, Kao H E, Feng C M, Huang Y C, Lin S H. On the search for C-H-O hydrogen bonding in aqueous acetic acid: Combined high-pressure infrared spectroscopy and ab initio calculations study. J Chem Phys, 2002, 117: 3799–3803

    Article  CAS  Google Scholar 

  2. Karle J, Brockway L O. An electron-diffraction investigation of the monomers and dimers of formic, acetic and trifluoroacetic acids and the dimer of deuterium acetate. J Am Chem Soc, 1944, 66: 574–584

    Article  CAS  Google Scholar 

  3. Frurip D J, Curtiss L A, Blander M. Vapor phase association in acetic and trifluoroacetic acids. Thermal conductivity measurements and molecular orbital calculations. J Am Chem Soc, 1980, 102: 2610–2616

    Article  CAS  Google Scholar 

  4. Davis J C Jr, Pitzer K S. Nuclear magnetic resonance (NMR) studies of hydrogen bonding. I. Carboxylic acids. J Phys Chem, 1960, 64: 886–892

    Article  CAS  Google Scholar 

  5. Waldstein P, Blatz L A. Low-frequency Raman spectra and molecular association in liquid formic and acetic acids. J Phys Chem, 1967, 71: 2271–2276

    Article  CAS  Google Scholar 

  6. Tjahjono M, Allian A D, Garland M. Experimental dipole moments for nonisolatable acetic acid structures in a nonpolar medium. A combined spectroscopic, dielectric, and DFT study for self-association in solution. J Phys Chem B, 2008, 112: 6448–6459

    Article  CAS  Google Scholar 

  7. Nakabayashi T, Kosugi K, Nishi N. Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations. J Phys Chem A, 1999, 103: 8595–8603

    Article  CAS  Google Scholar 

  8. Freedman E. The use of ultrasonic absorption for the determination of very rapid reaction rates at equilibrium: application to the liquid-phase association of carboxylic acids. J Chem Phys, 1952, 21: 1784–1790

    Article  Google Scholar 

  9. Cartwright D R, Monk C B. The molecular association of some carboxylic acids in aqueous solutions from conductivity data. J Chem Soc, 1955, 2500-2503

  10. Ng J B, Shurvell H F. A study of the self-association of acetic acid in aqueous solution using raman spectroscopy. Can J Spectrosc, 1985, 30: 149–153

    CAS  Google Scholar 

  11. Ng J B, Shurvell H F. Application of factor analysis and band contour resolution techniques to the Raman spectra of acetic acid in aqueous solution. J Phys Chem, 1987, 91: 496–500

    Article  CAS  Google Scholar 

  12. Tanaka N, Kitano H, Ise N. Raman spectroscopic study of hydrogen bonding in aqueous carboxylic acid solutions. J Phys Chem, 1990, 94: 6290–6292

    Article  CAS  Google Scholar 

  13. Johnson C M, Tyrode E, Baldelli S, Rutland M W, Leygraf C. A vibrational sum frequency spectroscopy study of the liquid-gas interface of acetic acid-water mixtures: 1. Surface speciation. J Phys Chem B, 2005, 109: 321–328

    Article  CAS  Google Scholar 

  14. Tyrode E, Johnson C M, Baldelli S, Leygraf C, Rutland M W. A vibrational sum frequency spectroscopy study of the liquid-gas interface of acetic acid-water mixtures: 2. Orientation analysis. J Phys Chem B, 2005, 109: 329–341

    Article  CAS  Google Scholar 

  15. Nishi N, Nakabayashi T, Kosugi K. Raman spectroscopic study on acetic acid clusters in aqueous solutions: Dominance of acid-acid association producing microphases. J Phys Chem A, 1999, 103: 10851–10858

    Article  CAS  Google Scholar 

  16. Colominas C, Teixido J, Cemeli J, Luque F J, Orozco M. Dimerization of carboxylic acids: Reliability of theoretical calculations and the effect of solvent. J Phys Chem B, 1998, 102: 2269–2276

    Article  CAS  Google Scholar 

  17. Aquino A J A, Tunega D, Haberhauer G, Gerzabek M H, Lischka H. Solvent effects on hydrogen bonds-a theoretical study. J Phys Chem A, 2002, 106: 1862–1871

    Article  CAS  Google Scholar 

  18. Chocholoušová J, Vacek J, Hobza P. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J Phys Chem A, 2003, 107: 3086–3092

    Article  Google Scholar 

  19. Génin F, Quilès F, Burneau A. Infrared and Raman spectroscopic study of carboxylic acids in heavy water. PCCP, 2001, 3: 932–942

    Google Scholar 

  20. Takamuku T, Kyoshoin Y, Noguchi H, Kusano S, Yamaguchi T. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR. J Phys Chem B, 2007, 111: 9270–9280

    Article  CAS  Google Scholar 

  21. Ouyang B, Howard B J. The monohydrate and dihydrate of acetic acid: A high-resolution microwave spectroscopic study. PCCP, 2009, 11: 366–373

    CAS  Google Scholar 

  22. Pu L, Wang Q, Zhang Y, Miao Q, Kim Y S, Zhang Z B. Architecture of hydrates and local structure of acetic acid aqueous solution: Ab initio calculations and Car-Parrinello molecular dynamics (CPMD) simulations on hydrogen-bonding rings, network, and intra-hydrate protonation in multi-hydrates of acetic acid monomer. Adv Quantum Chem, 2008, 54: 271–295

    Article  CAS  Google Scholar 

  23. Pu L, Sun Y M, Zhang Z B. Hydrogen bonding of hydrates of double acetic acid molecules. J Phys Chem A, 2009, 113: 6841–6848

    Article  CAS  Google Scholar 

  24. Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985, 55: 2471–2474

    Article  CAS  Google Scholar 

  25. CPMD, Copyright IBM Corp 1990–2004, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

  26. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  28. Zhan C G, Dixon D A. Absolute hydration free energy of the proton from first-principles electronic structure calculations. J Phys Chem A, 2001, 105: 11534–11540

    Article  CAS  Google Scholar 

  29. Zhan C G, Dixon D A. Hydration of the fluoride anion: Structures and absolute hydration free energy from first-principles electronic structure calculations. J Phys Chem A, 2004, 108: 2020–2029

    Article  CAS  Google Scholar 

  30. Cancès M T, Mennucci B, Tomasi J, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys, 1997, 107: 3032–3041

    Article  Google Scholar 

  31. Cossi M, Barone V, Mennucci B, Tomasi J. Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett, 1998, 286: 253–260

    Article  CAS  Google Scholar 

  32. Mennucci B, Tomasi J, Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys, 1997, 106: 5151–5158

    Article  CAS  Google Scholar 

  33. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery Jr J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 98. Revision A.6. Gaussian Inc. Pittsburgh PA. 1998

    Google Scholar 

  34. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03. Revision C.02. Gaussian Inc. Wallingford CT. 2004

    Google Scholar 

  35. Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970, 19: 553–566

    Article  CAS  Google Scholar 

  36. Gao Q, Leung K T. Hydrogen-bonding interactions in acetic acid monohydrates and dihydrates by density-functional theory calculations. J Chem Phys, 2005, 123: 074325

    Article  CAS  Google Scholar 

  37. Pu L, Miao Q, Xu H L, Zhang L L, Zhang Z B. Perception of hydrogen bonding ring in a local structure of aqueous solution in the CPMD simulation (in Chinese). Comput Appl Chem, 2007, 24: 1324–1328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YueMing Sun or ZhiBing Zhang.

Additional information

Supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 0901001C), the National Natural Science Foundation of China (Grant No. 20876072) and the Natural Science Foundation of Jiangsu Province (No. KB2008023)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, L., Sun, Y. & Zhang, Z. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions. Sci. China Ser. B-Chem. 52, 2219–2225 (2009). https://doi.org/10.1007/s11426-009-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0288-4

Keywords

Navigation