Skip to main content
Log in

Theoretical study on homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO) n (n= 3–5) and Ru2(CO) n (n = 8, 9)

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO) n (n = 3–5) and Ru2(CO) n (n = 8,9) have been investigated using density functional theory. Sixteen isomers are obtained. For Ru(CO)5, the lowest-energy structure is the singlet D 3h trigonal bipyramid. Similar to Os(CO)5, the distorted square pyramid isomer with C 2v symmetry lies ∼7 kJ·mol−1 higher in energy. For the unsaturated mononuclear ruthenium carbonyls Ru(CO)4 and Ru(CO)3, a singlet structure with C 2v symmetry and a C s bent T-shaped structure are the lowest-energy structures, respectively. The global minimum for the Ru2(CO)9 is a singly bridged (CO)4Ru(μ-CO)Ru(CO)4 structure. A triply bridged Ru2(CO)6(μ-CO)3 structure analogous to the known Fe2(CO)9 structure is predicted to lie very close in energy to the global minimum. For Ru2(CO)8, the doubly bridged C 2 structure is predicted to be the global minimum. For the lowest-energy structures of M2(CO) n (M = Fe, Ru, Os, n = 9,8), it is found that both iron and ruthenium are favored to form structures containing more bridging carbonyl groups, while osmium prefers to have structures with less bridging carbonyl groups. The study of dissociation energy shows that the dissociation of Ru2(CO)9 into the mononuclear fragments Ru(CO)5 + Ru(CO)4 is a less energetically demanding process than the dissociation of one carbonyl group from Ru2(CO)9 to give Ru2(CO)8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderazzo F, L’Eplattenier F. The pentacarbonyls of ruthenium and osmium. Inorg Chem, 1967, 6(6): 1220–1224

    Article  Google Scholar 

  2. Rushman P, Van Buuren G N, Shiralian M, Pomeroy R K. Properties of the pentacarbonyls of ruthenium and osmium. Organometallics, 1983, 2(5): 693–694

    Article  CAS  Google Scholar 

  3. Gregory M F, Poliakoff M, Turner J J. Infrared spectra of 13CO- enriched Ru(CO)5 in liquid xenon: The energy-factored force field. J Mol Struct, 1985, 127(3–4): 247–256

    Article  CAS  Google Scholar 

  4. Huang J, Hedberg K, Davis H B, Pomeroy R K. Structure and bonding in transition-metal carbonyls and nitrosyls. 4. Molecular structure of ruthenium pentacarbonyl determined by gas-phase electron diffraction. Inorg Chem, 1990, 29(20): 3923–3932

    Article  CAS  Google Scholar 

  5. Zhou M, Andrews L. Infrared spectra and density functional calculations of RuCO+, OsCO+, Ru(CO)x, Os(CO)x, Ru(CO) x and Os(CO) x (x = 1–4) in solid neon. J Phys Chem A, 1999, 103(35): 6956–6968

    Article  CAS  Google Scholar 

  6. Decker S A, Klobukowski M. The first carbonyl bond dissociation energies of M(CO)5 and M(CO)4(C2H2) (M = Fe, Ru, and Os): the role of the acetylene ligand from a density functional perspective. J Am Chem Soc, 1998, 120(36): 9342–9355

    Article  CAS  Google Scholar 

  7. Hastings W R, Baird M C. A new form of ruthenium tetracarbonyl. Inorg Chem, 1986, 25(16): 2913–2915

    Article  CAS  Google Scholar 

  8. Ziegler T, Tschinke V, Fan L, Becke A D. Theoretical study on the electronic and molecular structures of (C5H5)M(L) (M = Rh, Ir; L = CO, PH3) and M(CO)4 (M = Ru, Os) and their ability to activate the C-H bond in methane. J Am Chem Soc, 1989, 111(26): 9177–9185

    Article  CAS  Google Scholar 

  9. Bogdan P L, Weitz E. A transient infrared spectroscopy study of coordinatively unsaturated ruthenium carbonyls. J Am Chem Soc, 1989, 111(9): 3163–3167

    Article  CAS  Google Scholar 

  10. Corey E R, Dahl L F. Trinuclear osmium and ruthenium carbonyls and their identities with previously reported Os2(CO)9 and Ru2(CO)9. J Am Chem Soc, 1961, 83(9): 2203–2204

    Article  CAS  Google Scholar 

  11. Churchill M R, Hollander F J, Hutchinson J P. An accurate redeter- mination of the structure of triruthenium dodecacarbonyl, Ru3(CO)12. Inorg Chem, 1977, 16(10): 2655–2659

    Article  CAS  Google Scholar 

  12. Moss J R, Graham W A G. The enneacarbonyls of ruthenium and osmium. Dalton Trans, 1977, 95–99

  13. Grevels F W, Klotzbucher W E, Schrickel J, Schaffner K. Short-Wavelength flash photolytic fragmentation of Ru3(CO)12 in the presence of CO and complementary experiments with Ru(CO)5: a time-resolved IR spectroscopic study. J Am Chem Soc, 1994, 116(14): 6229–6237

    Article  CAS  Google Scholar 

  14. Hunstock E, Mealli C, Calhorda M J, Reinhold J. Molecular structures of M2(CO)9 and M3(CO)12 (M = Fe, Ru, Os): new theoretical insights. Inorg Chem, 1999, 38(22): 5053–5060

    Article  CAS  Google Scholar 

  15. Kabira S E, Hogarth G, The chemistry of [M3(CO)10(µ-dppm)](M = Ru, Os): Activating and maintaining the trinuclear core. Coord Chem Rev, 2009, 253: 1285–1315

    Article  Google Scholar 

  16. Therrien B, Georg S-F. Sawhorse-type diruthenium tetracarbonyl complexes. Coord Chem Rev, 2009, 253: 2639–2664

    Article  CAS  Google Scholar 

  17. Luo Q, Li Q S, Yu Z H, Xie Y M, King R B, Schaefer H F. Bonding of seven carbonyl groups to a single metal atom: theoretical study of M(CO)n (M = Ti, Zr, Hf; n = 7, 6, 5, 4). J Am Chem Soc, 2008, 130(24): 7756–7765

    Article  CAS  Google Scholar 

  18. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  CAS  Google Scholar 

  19. Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B, 1986, 33: 8822–8824

    Article  Google Scholar 

  20. Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J Chem Phys, 1998, 108(2): 664–675

    Article  CAS  Google Scholar 

  21. Dolg M, Stoll H, Preuss H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor Chim Acta, 1993, 85(6): 441–450

    Article  CAS  Google Scholar 

  22. Andrae D, Haußermann U, Dolg M, Preuß H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theo Chim Acta, 1990, 77(2): 123–141

    Article  CAS  Google Scholar 

  23. Dunning T H. Gaussian basis functions for use in molecular calculations. I. contraction of (9s5p) atomic basis sets for the first-row atoms. J Chem Phys, 1970, 53(7): 2823–2833

    Article  CAS  Google Scholar 

  24. Huzinaga S. Gaussian-Type functions for polyatomic systems. I. J Chem Phys, 1965, 42(4): 1293–1302

    Article  Google Scholar 

  25. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery Jr J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A D, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chem W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 03. Pittsburgh: Gaussian Inc, 2003

    Google Scholar 

  26. Feng X J, Gu J D, Xie Y M, King R B, Schaefer H F. Homoleptic carbonyls of the second-row transition metals: evaluation of hartree? fock and density functional theory methods. J Chem Theor Comput, 2007, 3(4): 1580–1587

    Article  CAS  Google Scholar 

  27. Xu B, Li Q S, Xie Y M, King R B, Schaefer H F. Homoleptic mononuclear and binuclear osmium carbonyls Os(CO)n (n = 3–5) and Os2(CO)n (n = 8, 9): comparison with the iron analogues. Inorg Chem, 2008, 47(9): 3869–3878

    Article  CAS  Google Scholar 

  28. Peng B, Li Q S, Xie Y M, King R B, Schaefer H F. Unsaturated trinuclear ruthenium carbonyls: large structural differences between analogous carbonyl derivatives of the first, second, and third row transition metals. Dalton Trans, 2008: 6977–6986

  29. Xie Y M, King R B, Schaefer H F. Binuclear homoleptic iron carbonyls: incorporation of formal iron-iron single, double, triple, and quadruple bonds, Fe2(CO)x (x = 9, 8, 7, 6). J Am Chem Soc, 2000, 122(36): 8746–8761

    Article  CAS  Google Scholar 

  30. Jiang F, Jenkins H A, Biradha K. Davis H B, Pomeroy R K, Zaworotko M J. Compounds with unbridged dative metal-metal bonds of formula (R3P)2 (OC)3OsW (CO)5 and related complexes, Organometallics, 2000, 19(24): 5049–5062

    Article  CAS  Google Scholar 

  31. Fletcher S C, Poliakoff M, Turner J J. Structure and reactions of Fe2(CO)8: an IR spectroscopic study using 13CO, photolysis with plane-polarized light and matrix isolation. Inorg Chem, 1986, 25(20): 3597–3604

    Article  CAS  Google Scholar 

  32. Hoffmann R. Building bridges between inorganic and organic chemistry. Angew Chem Int Ed Eng, 1982, 21(10): 711–724

    Article  Google Scholar 

  33. Haynes A, Poliakoff M, Turner J J. The photochemistry of dinuclear osmium carbonyl complexes; characterisation of Os2(CO)8 using matrix isolation. J Organomet Chem, 1990, 383(1–3): 497–519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QianShu Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20873045 and 20973066)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Gu, F., Zhang, X. et al. Theoretical study on homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO) n (n= 3–5) and Ru2(CO) n (n = 8, 9). Sci. China Ser. B-Chem. 52, 1938–1944 (2009). https://doi.org/10.1007/s11426-009-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0283-9

Keywords

Navigation