Advertisement

Functional-template directed self-assembly (FTDSA) of mesostructured organic-inorganic hybrid materials

  • LeLe Li
  • LingDong Sun
  • YaWen Zhang
  • ChunHua YanEmail author
Article
  • 117 Downloads

Abstract

Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992, increasing attention has been focused on the design and synthesis of mesostructured functional materials. Organic functionalization is becoming a major topic in this research field, since highly ordered mesostructured organic-inorganic hybrids offer novel functionalities and enhanced performance over their individual components. We begin with a brief overview of the three fundamental methods (post-synthetic grafting technique, co-condensation method, and preparation of periodic mesoporous organosilicas) for the preparation of organically functionalized mesostructured silica, and focus on one of the most promising approaches, which herein was named as functional-template directed self-assembly (FTDSA) approach, and in the eyes of the authors it has a special position in the preparation of this class of hybrid materials. A comprehensive overview of the state of research in the area of FTDSA and its potential applications will be given.

Keywords

mesoporous materials self-assembly organic-inorganic hybrids 

References

  1. 1.
    Service R F. How far can we push chemical self-assembly? Science, 2005, 309: 95CrossRefGoogle Scholar
  2. 2.
    Whitesides G M, Grzybowski B A. Self-assembly at all scales. Science, 2002, 295: 2418–2421CrossRefGoogle Scholar
  3. 3.
    Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH, 1995Google Scholar
  4. 4.
    Ringsdorf H, Simon J. Molecular self-assembly-snap-together vesicles. Nature, 1994, 371: 284284CrossRefGoogle Scholar
  5. 5.
    Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843CrossRefGoogle Scholar
  6. 6.
    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Å pores. Science, 1998, 279: 548–552CrossRefGoogle Scholar
  7. 7.
    Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed, 1999, 38: 56–77CrossRefGoogle Scholar
  8. 8.
    Wan Y, Shi Y F, Zhao D Y. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun, 2007, 897–926Google Scholar
  9. 9.
    Schüth F. Non-siliceous mesostructured and mesoporous materials. Chem Mater, 2001, 13: 3184–3195CrossRefGoogle Scholar
  10. 10.
    He X, Antonell D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves. Angew Chem Int Ed, 2002, 41: 214–229CrossRefGoogle Scholar
  11. 11.
    Wan Y, Yang H F, Zhao D Y. “Host-guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc Chem Res, 2006, 39: 423–432CrossRefGoogle Scholar
  12. 12.
    Boettcher S W, Fan J, Tsung C K, Shi Q, Stucky G D. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Acc Chem Res, 2007, 40: 784–792CrossRefGoogle Scholar
  13. 13.
    Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396; 152–155CrossRefGoogle Scholar
  14. 14.
    Yuan Q, Liu Q, Song W G, Feng W, Pu W L, Sun L D, Zhang Y W, Yan C H. Ordered mesoporous Ce1 − xZrxO2 solid solutions with crystalline walls. J Am Chem Soc, 2007, 129: 6698–6699CrossRefGoogle Scholar
  15. 15.
    Yuan Q, Yin A X, Luo C, Sun L D, Zhang Y W, Duan W T, Liu H C, Yan C H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J Am Chem Soc, 2008, 130: 3465–3472CrossRefGoogle Scholar
  16. 16.
    Li L L, Duan, W T, Yuan Q, Li Z X, Duan H H, Yan C H. Hierarchical γ-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls. Chem Commun, 2009, 6174–6176Google Scholar
  17. 17.
    Attard G S, Glyde J C, Göltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378: 366–368CrossRefGoogle Scholar
  18. 18.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D. Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261; 1299–1303CrossRefGoogle Scholar
  19. 19.
    Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructured materials for optical applications. Chem Mater, 2001, 13: 3140–3150CrossRefGoogle Scholar
  20. 20.
    Moller K, Bein T. Inclusion chemistry in periodic mesoporous hosts. Chem Mater, 1998, 10: 2950–2963CrossRefGoogle Scholar
  21. 21.
    Kickelbick G. Hybrid inorganic-organic mesoporous materials. Angew Chem Int Ed, 2004, 43: 3102–3104CrossRefGoogle Scholar
  22. 22.
    Hoffmann F, Cornelius M, Morell J, Fröba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed, 2006, 45: 3216–3251CrossRefGoogle Scholar
  23. 23.
    Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater, 2008, 20: 682–737CrossRefGoogle Scholar
  24. 24.
    Hunks W J, Ozin G A. Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem, 2005, 15: 3716–3724CrossRefGoogle Scholar
  25. 25.
    Hatton B, Landskron K, Whitnall W, Perovic D, Ozin G A. Past, present, and future of periodic mesoporous organosilicass-the PMOs. Acc Chem Res, 2005, 38: 305–312CrossRefGoogle Scholar
  26. 26.
    Fujita S, Inagaki S. Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem Mater, 2008, 20: 891–908CrossRefGoogle Scholar
  27. 27.
    Fan H, Lu Y, Stump A, Reed S T, Baer T, Schunk R, Perez-Luna V, López G P, Brinker C J. Rapid prototyping of patterned functional nanostructures. Nature, 2000, 405: 56–60CrossRefGoogle Scholar
  28. 28.
    Wirnsberger G, Scott B J, Stucky G D. pH sensing with mesoporous thin films. Chem Commun, 2001, 119–120Google Scholar
  29. 29.
    Liu N, Chen Z, Dunphy D R, Jiang Y, Assink R A, Brinker C J. Angew Chem Int Ed, 2003, 42: 1731–1734CrossRefGoogle Scholar
  30. 30.
    Li L L, Fang C J, Yuan Q, Yan C H. Stabilization of facial isomer of tris(8-hydroxyquinolinate) aluminum though confinement in silica-surfactant mesostructures. Appl Phys Lett, 2007, 90, 231908CrossRefGoogle Scholar
  31. 31.
    Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421: 350–353CrossRefGoogle Scholar
  32. 32.
    Nguyen T D, Leung K C F, Liong M, Liu Y, Stoddart J F, Zink J I. Versatile supramolecular nanovalves reconfigured for light activation. Adv Funct Mater, 2007, 17: 2101–2110CrossRefGoogle Scholar
  33. 33.
    Angelos S, Johansson E, Stoddart J F, Zink J I. Mesostructured silica supports for functional materials and molecular machines. Adv Funct Mater, 2007, 17: 2261–2271CrossRefGoogle Scholar
  34. 34.
    Zhang R, Ding W, Tu B, Zhao D. Mesoporous silica: an efficient nanoreactor for liquid-liquid biphase reactions. Chem Mater, 2007, 19: 4379–4381CrossRefGoogle Scholar
  35. 35.
    Inagaki S, Guan S, Fukushima Y, Oshuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc, 1999, 121: 9611–9614CrossRefGoogle Scholar
  36. 36.
    Asefa T, MacLachlan M J, Coombs N, Ozin G A. Periodicmesoporous organosilicas with organic groups inside the channelwalls. Nature, 1999, 402; 867–871Google Scholar
  37. 37.
    Melde B J, Holland B T, Blanford C F, Stein A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem Mater, 1999, 11: 3302–3308CrossRefGoogle Scholar
  38. 38.
    Inagaki S, Guan S, Ohsuna T, Terasaki O. An orderedmesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 2002, 416: 304–307CrossRefGoogle Scholar
  39. 39.
    Kapoor M P, Yang Q, Inagaki S. Self-assembly of biphenylene-bridged hybrid mesoporous solid with molecular-scale periodicity in the pore walls. J Am Chem Soc, 2002, 124: 15176–15177CrossRefGoogle Scholar
  40. 40.
    Hossain K Z, Mercier L. Intra framework metal ion adsorption in ligand-functionalized mesoporous silica. Adv Mater, 2002, 14: 1053–1056CrossRefGoogle Scholar
  41. 41.
    Olkhovyk O, Jaroniec M. Periodic mesoporous organosilica with large heterocyclic bridging groups. J Am Chem Soc, 2005, 127: 60–61CrossRefGoogle Scholar
  42. 42.
    Peng H, Tang J, Yang L, Pang J, Ashbaugh H S, Brinker C J, Yang Z, Lu Y F. Responsive periodic mesoporous polydiacetylene/silica nanocomposites. J Am Chem Soc, 2006, 128: 5304–5305CrossRefGoogle Scholar
  43. 43.
    Chandra D, Yokoi T, Tatsumi T, Bhaumik A. Highly luminescent organic-inorganic hybrid mesoporous silicas containing tunable chemosensor inside the pore wall. Chem Mater, 2007, 19: 5347–5354CrossRefGoogle Scholar
  44. 44.
    Mizoshita N, Goto Y, Kapoor M P, Shimada T, Tani T, Inagaki S. Fluorescence emission from 2,6-naphthylene-bridged mesoporous organosilicas with an amorphous or crystal-like framework. Chem Eur J, 2009, 15: 219–226CrossRefGoogle Scholar
  45. 45.
    Guo Y, Mylonakis A, Zhang Z, Yang G, Lelkes P I., Che S, Lu Q, Wei Y. Templated synthesis of electroactive periodic mesoporous organosilica bridged with oligoaniline. Chem Eur J, 2008, 14: 2909–2917CrossRefGoogle Scholar
  46. 46.
    Whitnall W, Cademartiri L, Ozin G A. C60-PMO: Periodic Mesoporous Buckyballsilica. J Am Chem Soc, 2007, 129: 15644–15649CrossRefGoogle Scholar
  47. 47.
    Polarz S, Kuschel A. Preparation of a periodically ordered mesoporous organosilica material using chiral building blocks. Adv Mater, 2006, 18: 1206–1209CrossRefGoogle Scholar
  48. 48.
    García R A, Grieken R, Iglesias J, Morales V, Gordillo D. Synthesis of chiral periodic mesoporous silicas incorporating tartrate derivatives in the framework and their use in asymmetric sulfoxidation. Chem Mater, 2008, 20: 2964–2971CrossRefGoogle Scholar
  49. 49.
    Dufaud V, Beauchesne F, Bonneviot L. Organometallic chemistry inside the pore walls of mesostructured silica materials. Angew Chem Int Ed, 2005, 44: 3475–3477CrossRefGoogle Scholar
  50. 50.
    Hudson S, Cooney J, Hondnett B K, Magner E. Chloroperoxidase on periodic mesoporous organosilanes: immobilization and reuse. Chem Mater, 2007, 19: 2049–2055CrossRefGoogle Scholar
  51. 51.
    Lu Y F, Yang Y, Sellinger A, Lu M C, Huang J M, Fan H Y, Haddad R, Lopez G, Burns A R, Sasaki D Y, Shelnutt J, Brinker C J. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 2001, 410: 913–917CrossRefGoogle Scholar
  52. 52.
    Yang Y, Lu Y F, Lu M C, Huang J M, Haddad R, Xomeritakis G, Liu N G, Malanoski A P, Sturmayr D, Fan H Y, Sasaki D Y, Assink R A, Shelnutt J A, van Swol F, Lopez G, Burns A R, Brinker C J. Functional nanocomposites prepared by self-assembly and polymerization of diacetylene surfactants and silicic acid. J Am Chem Soc, 2003, 125: 1269–1277CrossRefGoogle Scholar
  53. 53.
    Aida T, Tajima K. Photoluminescent silicate microsticks containing aligned nanodomains of conjugated polymers by sol-gel-based in situ polymerization. Angew Chem Int Ed, 2001, 4: 3803–3806CrossRefGoogle Scholar
  54. 54.
    Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Ed, 2003, 42: 2154–2157CrossRefGoogle Scholar
  55. 55.
    Guo R, Li G, Zhang W, Shen G, Shen D. Superlong polypyrrole nanowires aligned within ordered mesoporous silica channels. ChemPhysChem 2005, 6: 2025–2028CrossRefGoogle Scholar
  56. 56.
    Li G, Bhosale, S, Wang, T, Zhang, Y, Zhu, H, Fuhrhop, J H. Gram-scale synthesis of submicrometer-long polythiophene wires in mesoporous silica matrices. Angew Chem Int Ed, 2003, 42: 3818–3821CrossRefGoogle Scholar
  57. 57.
    Yang Z, Kou X, Ni W, Sun Z, Li L, Wang J. Fluorescent mesostructured polythiophene-silica composite particles synthesized by in situ polymerization of structure-directing monomers. Chem Mater, 2007, 19: 6222–6229CrossRefGoogle Scholar
  58. 58.
    Clark A P Z, Shen K F, Rubin Y F, Tolbert S H. An amphiphilic poly(phenylene ethynylene) as the structure-directing agent for periodic nanoscale silica composite materials. Nano Lett, 2005, 5: 1647–1652CrossRefGoogle Scholar
  59. 59.
    Li L L, Fang C J, Sun H, Yan C H. Hierarchical self-assembly of pH-responsive nanocomposites with molecular-scale and mesoscale periodicities. Chem Mater, 2008, 20: 5977–5986CrossRefGoogle Scholar
  60. 60.
    Li L L, Sun H, Bai Y C, Fang C J, Yan C H. Orientational organization of organic semiconductors within periodic nanoscale silica channels: modification of fluorophore photophysics through hierarchical self-assembly. Chem Eur J, 2009, 15: 4716–4724CrossRefGoogle Scholar
  61. 61.
    Li L L, Sun H, Yuan Q, Fang C J, Sun L D, Yan C H. Mesostructured hybrids containing potential donors and acceptors with molecular-scale and meso-scale segregation and ordering: toward the development of smart materials through hierarchical self-assembly. Chem Mater, 2009, 21: 4589–4597CrossRefGoogle Scholar
  62. 62.
    Bhongale C J, Hsu C S. Emission enhancement by formation of aggregates in hybrid chromophoric surfactant amphiphile/silica nanocomposites. Angew Chem Int Ed, 2006, 45: 1404–1408CrossRefGoogle Scholar
  63. 63.
    Yang C H, Bhongale C J, Liao Y M, Hsu C S. Fabrication of hybrid chromophoric amphiphile/silica nanocomposite-based light emitting devices with enhanced performance. J Mater Chem, 2007, 17: 243–253CrossRefGoogle Scholar
  64. 64.
    Sofos M, Goldberger J, Stone D A, Allen J E, Ma Q, Herman D J, Tsai W W, Lauhon L J, Stupp S. I. A synergistic assembly of nanoscale lamellar photoconductor hybrids. Nat Mater, 2009, 8: 68–75CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • LeLe Li
    • 1
  • LingDong Sun
    • 1
  • YaWen Zhang
    • 1
  • ChunHua Yan
    • 1
    Email author
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications & PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations